期刊文献+

The Relation on the Coefficients and Roots of Adjoint Polynomial and Its Application

伴随多项式的根与系数的关系及应用(英文)
下载PDF
导出
摘要 The parameter R(G) is the function about the front three coeffcients of the adjoint polynomial of graph G. In the paper, the range of R(G) is given when β(G) 〈 β(Dn), where β(G) is the minimum root of the adjoint polynomial of graph G and the chromatically equivalent classification of tDn is completely depicted.Furthermore, a sufficient and necessary condition for the class of graphs to be chromatically unique is obtained.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第3期317-324,共8页 数学季刊(英文版)
基金 Supported by the National Science Foundation of China(10761008) Supported by the Science Foundation of the State Education Ministry of China(205170)
关键词 chromatically equivalent adjoint polynomial the least root 伴随多项式 多项式的根 系数和 应用 充分必要条件 等价分类 色唯一
  • 相关文献

参考文献8

  • 1LIU Ru-ying. Adjoint polynomials and chromatically unique graph[J]. Discrete Math, 1997, 172: 85-92.
  • 2Du Qing-yan. The graph parameters(G) and the classification of graphs according to it[J]. Acta Sci Natur Univ Neimonggol, 1995, 26: 258-262.
  • 3DONG Feng-ming, TEO K L, LITTLE C H C, HENDY M D. Chromaticity of some families of dense graphs[J]. Discrete Math, 2002, 258: 303-321.
  • 4DONG Feng-ming, TEO K L, LITTLE C H C, HENDY M D. Chromaticity of some families of dense graphs[J]. Discrete Appl Math, 2002, 119: 251-257.
  • 5LIU Ru-ying. Chromatic uniqueness of complementary graphs of a class of trees[J]. Math Applicata Sup- plement, 1996, 9: 170-173.
  • 6YE Cheng-fu, YANG Wen-jie. Graphs with the same color partition as the complement of T(1, 2, n)[J]. J of Northeast Normal Univ, 2004, 36: 18-26.
  • 7WANG Shou-zhong, LIU Ru-ying. Chromatic uniqueness of the complements of cycle and Dn[J]. J Math Res Exposition, 1998, 18: 296-299.
  • 8ZHAO Hal-xing, LI Xue-liang, ZHANG Sheng-gui, et al. On the minimum real roots of the a-polynomials and chromatic uniqueness of graphs[J]. Discrete Math, 2004. 281: 277-294.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部