期刊文献+

The Uniformly Valid Solution for a Top System of Two Free Dimensions with Parameter

参数的两自由度陀螺系统的一致有效解(英文)
下载PDF
导出
摘要 A general top system of two free dimensions with parameter is studied and the four cases satisfied by the frequency of the system are discussed.Using the multiple scale method,its uniformly valid asymptotic solution,which is expressed by complex amplitudes,of the first order is obtained.And solvable conditions satisfied by the complex amplitudes are given,and then the relative result is generalized.
作者 欧阳成
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第3期453-457,共5页 数学季刊(英文版)
基金 Supported by the NNSF of China(10471039) Supported by the Natural Science Foundation of Zhejiang Province(Y606268) Supported by the E-Institutes of Shanghai Municipal Education Commission(E03004)
关键词 uniformly valid asymptotic solution solvable condition multiple scale method 系统频率 有效解 一致有效渐近解 尺寸 多尺度方法 一阶
  • 相关文献

参考文献9

  • 1ZHANG Fu. Coexistence of a pulse and multiple spikes and transition layers in the standing waves of a reaction-diffusion system[J]. J Diff Eqns, 2004, 205(1): 77-155.
  • 2HWANGM S. Kinetic decomposition for singularly perturbed higher order partial differential equations[J]. J Diff Eqns, 2004, 200(2): 191-205.
  • 3PERJAN A. Linear singular perturbation of hyperbolic-parabolic type[J]. Buletinul Acad De Stiinte, 2003, 42(2): 95-122.
  • 4HAMOUDA M. Interior layer for second-order singular equations[J]. Applicable Anal, 2003, 81(6): 837-866.
  • 5OUYANG Cheng, MO Jia-qi. A turning point problem of nonlinear equation[J]. Math Appl, 2001, 14(2): 6-7.
  • 6欧阳成.具有多重解的非线性奇摄动问题(英文)[J].数学进展,2007,36(3):363-370. 被引量:12
  • 7欧阳成.电流变液系统流动的渐近估计[J].物理学报,2004,53(6):1900-1902. 被引量:22
  • 8OUYANG Cheng. A singular perturbation to Robin boundary value problem of semi-linear ODE of second order[J]. Aeta Mathematica Scientia, 2005, 25(2): 251-255.
  • 9NAYFEH A H. Introduction to Perturbation Techniques[M]. New York: John Wiley and Sons, 1981.

二级参考文献8

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部