期刊文献+

基于子空间分析的人脸识别方法研究 被引量:10

Research of face recognition methods based on subspace analysis
下载PDF
导出
摘要 人脸识别技术是模式识别和机器视觉领域的一个重要研究方向,基于子空间分析的特征提取方法是人脸识别中特征提取的主流方法之一。本文对目前应用较多的子空间分析方法进行了研究,具体介绍了线性子空间分析方法:主成分分析(PCA)、线性鉴别分析(LDA)、独立主成分分析(ICA)、快速主成分分析(FastICA),和非线性子空间分析方法:基于核的PCA(KPCA)的基本思想以及这些方法在人脸识别中的研究进展和一些新的研究成果。此外,还应用orl及YaleB人脸库对几个基础的子空间方法进行了验证实验。实验结果表明,在几个子空间分析方法中,FastICA算法取得了最高的识别率。最后,结合实验结果对各算法的优缺点进行了分析总结。 Face recognition is an important research direction of pattern recognition and machine learning. Among many approaches to the face recognition, the feature extraction methods based on subspace analysis give the most promising results, and have become one of the most popular methods. In this paper, subspace analysis methods were research and several kinds of the linear subspace method, such as Principal Component Analysis(PCA), Linear Discriminant Analysis (LDA), Independent Component Analysis (ICA), Fast ICA and nonlinear subspace methods such as Kernel PCA(KPCA) were introduced. The basic principles and their research achievements of these methods were deseriped and the analysis applications to face recognition were given. Moreover, the ORL and YALE B databases were used to verify these basic subspace methods. The experiment results indicate that FastlCA method is more powerful than other subspace methods for face recognition. Finally, the advantages and disadvantages of these methods were demostrated by dicussing the experimented results.
出处 《中国光学与应用光学》 2009年第5期377-387,共11页 Chinese Optics and Applied Optics Abstracts
关键词 人脸识别 子空间分析 线性子空间分析 非线性子空间分析 face recognition subspace analysis linear subspace analysis nonlinear subspace analysis
  • 相关文献

参考文献7

二级参考文献99

  • 1宋刚,艾海舟,徐光祐.纹理约束下的人脸特征点跟踪[J].软件学报,2004,15(11):1607-1615. 被引量:15
  • 2Turk M A,Pentland A P.Face recognition using eigenfaces[C]// Proceedings of IEEE Computer Society Conference of Computer Vision and Pattern tlecognition,1991:586-591.
  • 3Yuenand P C,Lai J H.Independent component analysis oe face images[C]//IEEE Workshop Biologically Moticated Compurer,Seoul, Koren, 2000.
  • 4Hyvarinen A.Survey on independent component analysis[J].Neural Computing Surveys, 1999,2 : 94-128.
  • 5Martiriggiano T,Leo M,Spagnolo P,et al.Facial feature extraction by Kernel independent component analysis[C]//IEEE Conference on Advanced Video and Signal Based Surveillance,AVSS 2005,2005.
  • 6Duda R O,Hart P E,Stork D G.Pattern classification[M].李宏东,姚天翔,译.2版.北京:机械工业出版社,2001:146-150.
  • 7Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans on Neural Networks, 1999, 10(3) :626-634.
  • 8Aleksic Petar S, Katsaggelos Aggelos K. Automatic facial expression recognition using facial animation parameters and muhistream HMMs [ J]. IEEE Transactions on Information Forensics and Security, 2006, 1(1):3-11.
  • 9Michael J L, Julien Budynek, kamatsu Shigeru A. automatic classification of single facial images [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (12): 1357 - 1362.
  • 10Ma L, Xiao Y, Khorasani K, et al. A new facial expression recognition technique using 2D DCT and k-means algorithm[A]. In: Proceedings of International Conference on Image Processing [ C ] , Singapore ,2004,2,1269 - 1272.

共引文献56

同被引文献70

  • 1符德江,王波,陈鹏,宋成锐,朱玮玮.特征和结构信息对草图人脸识别的影响[J].应用心理学,2005,11(2):149-153. 被引量:3
  • 2朱小艳,汪晓华.人脸识别的分析与实现[J].商丘职业技术学院学报,2005,4(5):25-26. 被引量:1
  • 3曹林,王东峰,刘小军,邹谋炎.基于二维Gabor小波的人脸识别算法[J].电子与信息学报,2006,28(3):490-494. 被引量:22
  • 4张会森,王映辉.人脸识别技术[J].计算机工程与设计,2006,27(11):1923-1928. 被引量:18
  • 5Parke F.Computer generated animation of faces[C] //Proceedings of the ACM Annual Conference.Boston,USA:ACM,1972:451-457.
  • 6Bregler C,Covell M,Slaney M.Video rewrite:Driving visual speech with audio[C] //Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques.Los Angeles,USA:ACM,1997:353-360.
  • 7Shashua A,Riklin-Raviv T.The quotient image:Class based re-rendering and recognition with varying illuminations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):129-139.
  • 8Liu Z,Shan Y,Zhang Z.Expressive expression mapping with ratio images[C] //Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques.New York,USA:ACM,2001:271-276.
  • 9Zhang Q,Liu Z,Guo B,et al.Geometry-driven photorealistic facial expression synthesis[C] //Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.San Diego,USA:ACM,2003:177-186.
  • 10Lee Tong-Yee,Lin Ping-Hsien,et al.Photo-realistic 3D head modeling using multi-view images[C] //ICCSA LNCS 3044.Berlin Heidelberg:Springer-Verlag,2004:713-720.

引证文献10

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部