期刊文献+

有限域GF(q)上安全椭圆曲线的选取 被引量:3

Selection of security elliptic curve in finite field GF(q)
下载PDF
导出
摘要 椭圆曲线密码体制是安全性最高的公钥密码体制,它的安全性是基于椭圆曲线上的离散对数问题,同时椭圆曲线参数的选择对系统的安全性也至关重要。本文首先介绍了椭圆曲线密码体制的基本概念和相关数论知识,其次阐述了选择安全椭圆曲线的原则,最后详细介绍了如何通过选取合适的椭圆曲线参数来产生安全椭圆曲线,并对这些参数的合理性进行了验证。结果表明,按照这种方式所选取的椭圆曲线,抵御现有算法攻击能力大大增强。 Elliptic Curve Cryptography(ECC) is the most secure public key cryptosystem, whose security is based on the discrete logarithm problem in finite fields. The choice of elliptic curve is also crucial to system security. This article first introduces the basic concepts of elliptic curve and related number theory knowledge, then describes the selection principle of security elliptic curve, and introduces how to generate security elliptic curve by choosing appropriate parameters and verifies the rationality of these parameters at last. The results show that the ability of the elliptic curve, selected by this way, against the attack of existing algorithms, has been enhanced greatly.
出处 《信息与电子工程》 2009年第5期493-496,共4页 information and electronic engineering
关键词 椭圆曲线密码体制 安全曲线 椭圆曲线离散对数 公钥密码体制 Elliptic Curve Cryptography security curve elliptic curve discrete logarithm public key cryptosystem
  • 相关文献

参考文献8

二级参考文献44

  • 1[2]V.Miller,Uses of elliptic curves in cryptography,Advances in Cryptology-CRYPTO' 85.LNCS218,Santa Barbara,Calif.,Springer-Verlag,1986,417-426.
  • 2[3]Multiprecision Integer and Rational Arithmetic C/C++ Library(MIRCAL),available at http://indigo.ie/~msoott/.
  • 3[4]A.Menezes,T.Okamnoto,S.Vanstone,Reducing elliptic curve logarithms to logarithms in a finitoe field.IEEE Trans.on Information Theory,1993,39(5),1639-1646.
  • 4[5]N.Koblitz,A Course in Number Theory and Cryptogralphy,2nd e7ition.Spring-Verlag.1994.Ch.6.
  • 5[6]N.Koblitz,Algebraic Aspects of Cryptography,Algorithms and Computation in Math.Editors:E.Becker,M.Bronstein,H.Cohen,3(1998),Berlin Heidelberg,Springer-Verlag,1998,Ch.6.
  • 6[7]IEEE P1363,Standard Specifications for Public-Key Cryptography,Ballot Draft.1999,Drafts available at http://indigo,ie/~msoott/.
  • 7[8]R.Schoof,Elliptic curves over finite fields and the computation of square roots modp.Math.Comp.,1985,44(170),483-494.
  • 8[9].T.Izu,J.kogure,M.Noro,K.Yokoyama,Efficient Implementation of Sehoof's Algorithm.Asi acrypt'98,Berlin Heidelberg,Springer-Verlag,1998,66-79.
  • 9[10]Lehmann,Maurer,Mueller,Shoup ,Counting the number of points on elliptic curves over finite fields of characteristic greater than three,Proc.1st Algorithmic Number Theory Symposinn (ANTS),Berlin Heidelberg,Springer-Verlag,1994,LNCS877,60-70.
  • 10[1]N.Koblitz,Elliptic curve cryptosystems,Mathematics of Computation,1987,45(177),203-209.

共引文献28

同被引文献33

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部