期刊文献+

最简有效关联规则及其挖掘算法 被引量:1

Minimal Availability Association Rules and Mining Algorithm
下载PDF
导出
摘要 传统关联规则挖掘算法往往会产生过多规则而难以被决策者所采用。针对该问题,文章从应用的角度提出了最简有效关联规则,其特点是采用以后项为导向的挖掘方式,同时追求规则前后项之间的相关性,在此基础上给出了一种最简有效关联规则挖掘算法。利用该算法得到的最简有效关联规则集包括的规则数量大为减少且能得出与全部有效关联规则集相同的决策,避免了大量的冗余挖掘及无效挖掘,提高了挖掘效率和应用效果。 Conventional mining algorithms often produce too many rules for decision markets to digest. Instead, the concept of minimal availability association rules is introduced from the aspect of apphcation in this paper. Minimal availability rule set, which includes rules with item as consequent and the correlation of items as the antecedent, can be used to derive the same availability decisions as other association rules without availability information loss; while the number of minimal availability rules is much less than of all rules. A mining availability algorithm without redundant rules is proposed and the mining efficiency is improved.
作者 许娅
出处 《电脑与信息技术》 2009年第5期24-27,共4页 Computer and Information Technology
关键词 关联规则 相关性 最简有效关联规则 association rule correlation minimal availability association rules
  • 相关文献

参考文献8

  • 1Li J, Shen H, Topor R. Mining the Optimal Class Association Rule Set[J]. Knowledge-based Systems,2002,15(4):399-405.
  • 2李杰,徐勇,王云峰,王友.最简关联规则及其挖掘算法[J].计算机工程,2007,33(13):46-48. 被引量:10
  • 3B fin S, Mowani R, Silverstein C. Beyond market baskets: generalizing association rules to correlations [C]//Proceeding of the ACM SIGMOD Conference on Management of Data. Tucson, Arizone, USA, 1997:265-276.
  • 4韦素云,吉根林,曲维光.关联规则的冗余删除与聚类[J].小型微型计算机系统,2006,27(1):110-113. 被引量:15
  • 5杨红菊,梁吉业.一种有效的关联规则的挖掘方法[J].计算机应用,2004,24(3):88-89. 被引量:17
  • 6杨越越,翟延富,董祥军,李刚,郭跃斌.一种改进的冗余规则修剪方法[J].郑州大学学报(理学版),2007,39(4):134-136. 被引量:3
  • 7Chen G, Wei Q, Liu D, et al. Simple Association Rules(SAR) and the SAR based Rule Discovery[J]. Computers & Industrial Engineering, 2002,43 (7):721-733.
  • 8Agrawal R. Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Databases [C]//Proc. Of the ACMSIGMOD Conference on Management of Data. 1993:207-216.

二级参考文献18

  • 1Brin S, Motwani R, Silverstein C. Beyond market basket: generalizing association rules to correlations [C]. In: Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data, Tucson, AZ,1997, 265-276.
  • 2Ester M, Kriegel H-P, Sander J et al. A density-based algorithm for discovering clusters in large spatial databases withnoise[C]. In: Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining,Portland, Oregon, 1996, 226-231.
  • 3Srikant R, Vu Q, Agrawal R. Mining association rules with item constraints[C]. In: Proc. 1997 Int. Conf. Knowledge Discovery in Databases and Data Mining, Newport Beach, California, 1997,67-73.
  • 4Ng R, Lakshmanan L V S, Han Jet al. Exploratory mining and pruning optimizations of constrained associations rules[C]. In:Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data,Seattle, WA, 1998,13-24.
  • 5Aggrawal C, Yu P S. Online generation of association rules[C]. In: Proc. 1998 Int. Conf. Data Engineering, Orlando,FL, 1998,402-411.
  • 6Toivonen H, Klemettinen M, Ronkainen Pet al. Pruning and grouping discovered association rules[Z]. In MLnet Workshop on Statistics, Machine Learning, and Discovery in Databases,Crete, Greece, 1995, 47-52.
  • 7Liu B, Hsu W, Ma Y. Pruning and summarizing the discovered associations[C]. In: Proc. 1999 ACM-SIGKDD Int. Conf.Knowledge Discovery and Data Mining. San Diego, CA. USA,1999,125-134.
  • 8Li J, Shen H, Topor R. Mining the smallest association rule set for predictions[C]. In: Proc. 2001 IEEE Int. Conf. Data Mining. San Jose, California, USA, 2001,361-368.
  • 9Lent B, Swami A, Widom J. Clustering association rules[C].In: Proc. 1997 Int. Conf. Data Engineering, Birminghan, England, 1997,220-231.
  • 10Gupta G K, Strehl A, Ghosh J. Distance based clustering of association rules[C]. In: Proc. Intelligent Engineering Systems Through Artificial Neural Networks , St. Louis, Missouri:ASME Press, 1999, 759-764.

共引文献41

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部