期刊文献+

带有时滞的SIR模型的稳定性和Hopf分支

Stability and Hopf bifurcation in an SIR model with delay
下载PDF
导出
摘要 考虑了一个具有非线性表现率且带有时滞的SIR模型。首先分析了无病平衡点和非平凡平衡点的稳定性;然后利用正规型理论和中心流行定理,得到了分支周期解的稳定性、方向和一些其他性质的条件;最后用数值模拟验证和支持了给出的理论结果。 A time-delayed SIR model with a nonlinear incidence rate was considered. First, the stability of the disease-free and non-trivial equilibriums were studied and then the explicit formulas which determine the stability, direction and other properties of bifurcating periodic solution were derived. At last, numerical simulations supporting the theoretical analysis were also given.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期99-104,共6页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项(30700100) 国家社会科学重点基金项目(04AJL007)
关键词 HOPF分支 周期解 稳定性 带时滞微分方程 数值模拟 Hopf bifurcation periodic solution stability delay differential equation numerical simulation
  • 相关文献

参考文献9

  • 1KYRYCHKO Y, BLYUSS B. Global properties of a de-lay SIR model with temporary immunity and nonlinear incidence rate[J]. Nonlinear Anal Real World Appl, 2005, 6: 495-507.
  • 2JIANG Zhi-chao, WEI Jun-jie. Stability and bifur-cation analysis in a delayed SIR model[J]. Chaos, Solitons & Practals, 2006, 35(3): 609-619.
  • 3BERETTA E, TAKEUCHI Y. Global stability of an SIR epidemic model with time delays[J]. Math Biol, 1995, 33: 250-260.
  • 4SONG Yong-li, HAN Mao-an, PENG Ya-hong. Stability and Hopf bifurcations in a competitive Lotka- Volterra system with two delays[J]. Chaos Solitons & Practals, 2004, 22(5): 1 139-1 148.
  • 5SUN Cheng-jun, LIN Yi-ping, HAN Mao-an. Stabil-ity and Hopf bifurcation for an epidemic disease model with delay[J].Chaos Solitons & Fractals, 2006, 30(1-2): 204-216.
  • 6SUN Cheng-jun, HAN Mao-an, LIN Yi-ping, et al.Global qualitative analysis for a predator-prey system with delay[J]. Chaos Solitons & Fractals, 2007, 32(4): 1 582-1 596.
  • 7HASSARD B, KAZARINOFF D, WAN Y. Theory and applications of Hopf bifurcation[M]. Cambridge: Cambridge University Press, 1981: 211-213.
  • 8马智慧,李文龙,李自珍,王淑璠.具有已感染者庇护所效应的传染病模型[J].兰州大学学报(自然科学版),2008,44(2):111-114. 被引量:8
  • 9张丰盘,李自珍,朱高峰.3物种食物链的集合群落中捕食者追赶和猎物逃逸对空间同步性的影响(英文)[J].兰州大学学报(自然科学版),2008,44(1):36-42. 被引量:2

二级参考文献30

  • 1YLIKARJULA J, ALAJA S, LAAKSO J, et al. Effects of patch number and dispersal patterns on population dynamics and synchrony[J]. J Theoret Biol, 2000. 207: 377-387.
  • 2MATTER S F. Synchrony, extinction, and dynamics of spatially segregated, heterogeneous populations[J]. Ecol Model, 2001, 141: 217-226.
  • 3MORAN P A P. The statistical analysis of the Canadian lynx cycle Ⅱ: Synchronization and meteorology[J]. Aust J Zool, 1953, 1: 291-298.
  • 4BOLKER B M, GRENFELL B T. Impact of vaccination on the spatial correlation and persistence of measles dynamics[J]. Proc Natl Acad Sci(USA), 1996, 93: 12648-12653.
  • 5BJФRNSTAD O N, IMS R A, XAVIER L B, Spatial population dynamics: analyzing patterns and processes of population synchrony[J]. Trends Ecol Evol, 1999. 14: 427-432.
  • 6HENIO M, KAITALA V, RANTA E, et al. Synchronous dynamics and rates of extinction in spatially structured populations[J]. Proc R Soc Lond B, 1997, 264: 481-486.
  • 7KENDALL B E, BJФNSTAND O N, BASCOMPTE J, et al. Dispersal, environmental correlation and spatial synchrony in population dynamics[J]. Am Nat, 2000. 155: 628-635.
  • 8LEIBOLD M A, HOLYOAK M, MOUQUET N, et al. The metacommunity concept: a framework for multi-scale community ecology[J]. Ecol Lett, 2004, 7: 601-613.
  • 9LLOYD A L, MAY M A. Synchronicity, chaos and population cycles: spatial coherence in an uncertain world[J]. Trends Ecol Evol, 1999, 14: 417-418.
  • 10RANTA E, KAITALA V, LINDSTROM J, et al. Synchrony in population dynamics[J]. Proc R Soc Lond Ser B, 1995, 262: 113-118.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部