期刊文献+

非同构饱和正交设计的最小矩混杂优势准则

Minimum Moment Aberration Majorization in Non-isomorphic Asymmetrical Saturated Designs
下载PDF
导出
摘要 为了区分不同构的饱和正交设计,Fang和Zhang提出最小混杂优势准则区分不同构的对称饱和正交设计,然而该方法不能区分非对称的情况.为此,该文考虑最小矩混杂优势准则及其性质并推广文献[2]的结果.同时,基于该准则,给出一个新算法来检测对称或非对称设计的非同构性.例子显示最小矩混杂优势准则可以有效的区分非同构饱和设计. For distinguishing non-isomorphic orthogonal saturated designs,Fang and Zhang proposed the minimum aberration majorization approach to distinguish non-isomorphic symmetrical orthogonal saturated designs.However,their method can not distinguish the asymmetrical cases.In this paper,the authors consider the criterion of minimum moment aberration majorization(MMAM) and extend the results in.On the basis of this criterion,a new algorithm is given to detect the non-isomorphism of both symmetrical and designs.Examples show the MMAM approach is useful for distinguishing non-isomorphic saturated designs.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2009年第5期1145-1152,共8页 Acta Mathematica Scientia
基金 国家自然科学基金(10571127) 北京师范大学香港浸会大学联合国际学院统计与智能计算研究所资助
关键词 非对称 非同构 最小矩混杂优势准则 投影矩向量分布 饱和设计 Asymmetrical Non-isomorphism Projection moment vector distribution Saturated design
  • 相关文献

参考文献9

  • 1Clark J B, Dean A M. Equivalence of fractional factorial designs. Statistica Sinica, 2001, 11:537-547.
  • 2Fang K T, Zhang A. Minimum aberration majorization in non-isomorphic saturated designs. J Statist Plan Infer, 2004, 126:337-346.
  • 3Liu M Q, Fang K T, Hickernell F J. Connections among different criteria for asymmetrical fractional factorial designs. Statistica Sinica, 2006, 16:1285-1297.
  • 4Ma C X, Fang K T. A note on generalized aberration in factorial designs. Metrika, 2001, 53:85-93.
  • 5Ma C X, Fang K T, Lin D K J. On isomorphism of factorial designs. J Complexity, 2001, 17:86-97.
  • 6Marshall A W, Olkin I. Inequalities: Theory of Majorization and Its Applications. New York: Academic Press, 1979.
  • 7Mukerjee R, Wu C F J. On the existence of saturated and nearly saturated asymmetrical orthogonal arrays. Ann Statist, 1995, 23:2102-2115.
  • 8Xu H. Minimum moment aberration for nonregular designs and supersaturated designs. Statistica Sinica, 2003, 13:691-708.
  • 9Xu H, Wu C F J. Generalized minimum aberration for asymmetrical fracrional factorial designs. Ann Statist, 2001, 29:1066-1077.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部