期刊文献+

在再生核空间中求解非线性奇异两点边值问题 被引量:5

Solving Nonlinear Singular Two-point Boundary-value Problem in the Reproducing Kernel Space
下载PDF
导出
摘要 该文建立了一个迭代方法求解一类奇异两点边值问题(x^αu′)′=f(x,u,u′),其中x∈(0,1),α<2.解的表达式是在再生核空间W2[0,1]中以级数的形式给出的.近似解一致收敛到准确解.并且,误差是单调下降的.最后通过一些数值算例论述了所提方法的正确性与有效性. In this paper,the authors establish an iterative method to compute solution for a class of singular two-point boundary value problems(x~αu′)′= f(x,u,u′),where x∈(0,1),and<2.Representation of the solution is given in the form of series in the reproducing kernel space W_2[0,1].The n-term approximation u_n(x) is proved to converge to the exact solution. Furthermore,the approximate error of u_n(x) is monotone decreasing.Some numerical examples are illustrated to demonstrate the accuracy of the present method.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2009年第5期1274-1282,共9页 Acta Mathematica Scientia
基金 黑龙江省自然科学基金项目(A2007-11) 哈尔滨师范大学骨干教师资助计划项目(KG2007-03) 哈尔滨师范大学青年学术骨干资助计划项目 哈尔滨师范大学科技发展预研项目(08XYG-13) 黑龙江省新世纪高等教育教学改革工程项目(S08-15) 黑龙江省教育厅项目资助
关键词 准确解 奇异两点边值问题 再生核空间 Exact solution Singular two-point boundary-value problem Reproducing kernel space
  • 相关文献

参考文献12

  • 1Jamet P. On the convergence of finite difference approximations to one-dimensional singular boundary value problems. Numer Math, 1970, 14:355-378.
  • 2Chawla M M, Katti C P. A finite-difference method for a class of singular boundary-value problems. IMA J Numer Anal, 1984, 4:457-466.
  • 3Chawla M M, Mckee S, Shaw G. Order h^2 method for a singular two point boundary value problem. BIT 1986, 26(3): 318-326.
  • 4Kumar M. A fourth-order finite difference method for a class of singular two-point boundary value problems. Appl Math Comput, 2002, 133:539-545.
  • 5Kumar M. A three-point finite difference method for a class of singular two-point boundary value problems. J Comput Appl Math, 2002, 145:89-97.
  • 6Ciarlet P C, Natterer F, Varga R S. Numerical methods of high-order accuracy for singular nonlinear boundary-value problems. Numer Math, 1970, 15:87-99.
  • 7Iyengar S R K, Jain P. Spline methods for singular two-point boundary-value problems. Numer Math, 1987, 50:363-376.
  • 8Al-Gahtani H J. Integral-based solution for a class of second order boundary value problems. Appl Math Comput, 1999, 98:43-48.
  • 9Chawla M M, Katti C P. Auniform mesh finite difference method for a class of singular two-point boundaryvalue problems. SIAM J Numer Anal, 1985, 22:561-565.
  • 10Salah M EI-Sayed. Integral methods for computing solutions of a class of singular two-point boundary value problems. Appl Math Comput, 2002, 130:235-241.

同被引文献56

  • 1余爱晖,金怡.用带参数的三次样条插值方法解两点边值问题[J].杭州师范学院学报(自然科学版),2007,6(1):33-36. 被引量:1
  • 2Wendland H. Scattered Data Approximation. Cambridge: Cambridge University Press, 2005.
  • 3Buhmann M D. Radial Basis Functions: Theory and Implementations. Cambridge: Cambridge University Press, 2003.
  • 4Cucker F, Zhou D X. Learning Theory: An Approximation Theory Viewpoint. Cambridge: Cambridge University Press, 2007.
  • 5Ball K. Eigenvalues of Euclidean distance matrices. J Approx Theory 1992, 68(1): 74-82.
  • 6Narcowich F J, Sivakumar N, Ward J D. Stability results for scattered data interpolation on Euclidean spheres. Adv Comput Math, 1998, 8(3): 137-168.
  • 7Narcowich F J, Sivakumar N, Ward J D. On condition numbers associated with radial function interpola- tion. J Math Anal and Appl, 1994, 186(3): 457 -485.
  • 8Narcowich F J, Ward J D. Norms estimates for the inverses of a general class of scattered data radial function interpolation matrices. J Approx Theory, 1992, 69(1): 84- 109.
  • 9Jetter K, St5ckler J, Ward J D. Error estimates for scattered data interpolation on spheres. Math Comp, 1999, 68(226): 733- 747.
  • 10Schaback R. Lower bounds for norms of inverses interpolation matrices for radial basis functions. J Approx Theory, 1994, 79(2): 287-306.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部