多正则函数的Riemann边值问题
The Boundary Value Problem of k-monogenic Functions in Clifford Analysis
摘要
该文利用欧拉算子得出了多正则函数边值问题的解,同时给出了欧拉算子的一些应用.
In this paper,the authors give the solution of boundary value problem of kmonogenic functions by Euler operator.And some applications of Euler operator in Clifford analysis also be given.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2009年第5期1321-1330,共10页
Acta Mathematica Scientia
基金
国家自然科学基金(10871150)
高等学校博士学科点专项基金(20060486001)资助
关键词
欧拉算子
多正则函数
边值问题
Euler operator
κ-nonogenic
Boundary value problem
参考文献15
-
1Balk M B. Polyanalytic Punctions. Berlin: Akademie Verlag, 1991.
-
2Brackx F, Delang R, Sommen F. Clifford Analysis. London: Pitman, 1982.
-
3Delanghe R, Sommne F, Soucek V. Clifford Algebra and Spinor-Valued Functions. London: Kluwer Academic Publishers, 1992.
-
4Ryan J. Basic Clifford analysis. Cubo Math Educ, 2000, 2:226-256.
-
5Gurlebeck K, Kahler U. On a boundary value problem of the Biahrmonic equation. Mathematical Methods in the Applied Sciences, 1997, 20:867-883.
-
6Helmuth R, Malonek, Ren Guangbin. Almansi-type theorems in Clifford analysis. Mathematical Methods in the Applied Science, 2002, 25:1541-1552.
-
7Du Jinyuan, Wang Yufeng. On boundary value problem of polyanalytic function on the real axis. Complex Variables, 2003, 48(6): 527-542.
-
8Zhang Zhongxiang, Du Jinyuan. Some Riemann boundary value and singular equations in Clifford analysis. Annals of Math (Chinese), 2001, 22A: 421-426.
-
9Gong Yafang, Du Jinyuan. A kind of Riemanna and Hilbert boundary value problem for left monogenic functions in R^m(m ≥ 2). Complex Variables, 2004, 49:303-318.
-
10Lu Jianke. Boundary Value Problem for Analytic Functions. Singapore: World Scientific, 1993.
-
1张俊俊,张隽.非线性对流扩散方程的守恒律[J].纯粹数学与应用数学,2016,32(3):296-304.
-
2方建会,陈培胜,张军,李红.相对论力学系统的形式不变性与Lie对称性[J].物理学报,2003,52(12):2945-2948. 被引量:8
-
3宋召青,王华驹,周绍磊.基于欧拉算子的劳斯判据[J].控制理论与应用,2000,17(4):626-628.
-
4DjilaliBehloul.ALGEBRAIC METHODS IN PARTIAL DIFFERENTIAL OPERATORS[J].Journal of Partial Differential Equations,2005,18(2):114-120.