期刊文献+

马氏相依风险模型红利折现的矩 被引量:4

Moments of the Discounted Dividends and Related Problems in a Markov-dependent Risk Model
下载PDF
导出
摘要 该文讨论常数红利边界下的马氏相依模型的矩的问题.首先,推导出破产前全部红利的折现期望、红利折现的高阶矩所满足的积分-微分方程组及相应的边界条件.然后,通过构造特殊的初始条件,利用Laplace变换,在给定的一类索赔分布下,得到上面方程组的显式解.最后,给出两状态下指数索赔的数值计算结果. In this paper,a Markov-dependent risk model with a constant dividend barrier is considered.A system of integro-differentiai equations with boundary conditions satisfied by the expected present value of the total dividends prior to ruin and the moments of the discounted dividends,given the initial environment state,are derived and solved.In two-state model, explicit solutions to the integro-differential equations are obtained when claim size distributions are exponentially distributed.
作者 刘娟 徐建成
出处 《数学物理学报(A辑)》 CSCD 北大核心 2009年第5期1390-1397,共8页 Acta Mathematica Scientia
基金 湖北师范学院研究生启动基金(2007D59 2007D60) 湖北省教育厅科学技术研究项目(020092207)资助
关键词 马氏相依风险模型 红利边界 积分-微分方程组 LAPLACE变换 Markov-dependent risk model Dividend barrier Integro-differential equation Laplace transform
  • 相关文献

参考文献12

  • 1Asmussen S. Ruin Probabilities. Singapore: World Scientific, 2000.
  • 2Janssen J, Reinhard J. Probabilites de ruine pour une classe de modules de risque semi-Markoviens. ASTIN Bulletin, 1985, 15(2): 123-134.
  • 3Albrecher H, Boxma O. On the discounted penalty function in a Markov-dependent risk model. Insurance Mathematics and Economics, 2005, 37(2): 650-672.
  • 4Albrecher H, Boxma O. A ruin model with dependence between claim sizes and claim intervals. Insurance Mathematics and Economics, 2004, 35(2): 245-254.
  • 5De Finetti Bruno. Su un'impostazione alternativa dell teoria collectiva del rischio. Transactions of the ⅩⅤ International Congress of Actuaries, 1957, 2:433-443.
  • 6Gerber H. An Introduction to Mathematical Risk Theory. Monograph Series 8. Philadelphia: Huebner Foundation, 1979.
  • 7Gerber H. On the probability of ruin in the presence of a linear dividend barrier. Scandinavian Actuarial Journal, 1981, (4): 105-115.
  • 8Zhang Chungsheng, Wu Rong. Union-distributions of extreme value on classical risk model. Acta Mathematica Scientia, 2003, 23A(1): 25-30.
  • 9Zhou Ming, Guo Junyi. Classical risk model with threshold dividend strategy. Acta Mathematica Scientia, 2008, 28B(2): 355-362.
  • 10Dickson D C M, Waters H R. Some optimal dividends problems. Astin Bulletin, 2004, 34:49-74.

同被引文献19

  • 1方世祖,罗建华.双复合Poisson风险模型[J].纯粹数学与应用数学,2006,22(2):271-278. 被引量:37
  • 2LUNDBERG F. Approximerad Framstallning av Scannolikhetsfunktionen. II. Aterforsakring av Kollektivrisker [D]. Uppsala: Almqvist & Wiksell, 1903.
  • 3BOIKOV A V. The Cramer-Lundberg Model with Stochastic Premium Process[J]. Theory of Probability and its Appli- cations, 2003, 47(3): 489-493.
  • 4LIN X S, WILLMOT G E, STEVE D. The Classical Model with a Constant Dividend Barrier: Anlysis of the Gerber- Shiu Discounted Penalty Function [J]. Insurance Mathematics and Economics, 2003, 33(3): 551-566.
  • 5Yi Lu,Shuanming Li.The Markovian regime-switching risk model with a threshold dividend strategy[J].Insurance Mathematics and Economics.2008(2)
  • 6Hansj?rg Albrecher,Onno J. Boxma.On the discounted penalty function in a Markov-dependent risk model[J].Insurance Mathematics and Economics.2005(3)
  • 7X. Sheldon Lin,Gordon E. Willmot,Steve Drekic.The classical risk model with a constant dividend barrier: analysis of the Gerber–Shiu discounted penalty function[J].Insurance Mathematics and Economics.2003(3)
  • 8X. Sheldon Lin,Gordon E. Willmot,Steve Drekic.The classical risk model with a constant dividend barrier: analysis of the Gerber–Shiu discounted penalty function[J]. Insurance Mathematics and Economics . 2003 (3)
  • 9A. V. Boikov.The Cram\’er-Lundberg model with stochastic premium process. Theory of Probability and Its Applications . 2002
  • 10姚定俊,汪荣明,徐林.随机保费风险模型下的平均折现罚金函数(英文)[J].应用概率统计,2008,24(3):319-326. 被引量:10

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部