期刊文献+

初始电子密度对光学薄膜激光损伤机制的影响(英文) 被引量:1

The Influence of Inherent Seed Electron on Laser Induced Damage Mechanism of Optical Films
下载PDF
导出
摘要 光学元件的激光损伤问题是激光器件向高功率密度方向发展中必须认识和克服的问题.基于Forkker-Planck方程,研究了激光与材料相互作用时的雪崩电离机制、多光子电离机制以及联合两种机制的情况.雪崩电离的产生需要一定密度的初始自由电子存在,该自由电子可以是材料中原本就存在的,也可能是光电离产生的.着重分析了材料中的初始自由电子对材料电离机制的影响.结果表明,雪崩过程在激光作用一段时间后会达到一个稳定的电离阶段(以自由电子平均能量不随时间变化为特征,且此时雪崩电离为材料电离的主导机制),该时间与光电离速率、材料中初始自由电子密度有关.材料中的初始自由电子可以在一定程度上掩盖光电离的作用效果. The interaction of a short or ultrashort pulse and optical films is a hot research field. Prevalent opinion is that the breakdown mechanism of optical films induced by laser pulse is avalanche ionization or photon ionization or the combination of them. Based on Forkker-Planck equation, these damage mechanisms were studied. The theoretic results indicate that it needs some time for a stable avalanche ionization process to form when avalanche ionization dominates the damage process. This stable avalanche ionization is characterized by the unaltered average electronic energy. The damage mechanism of optical films affected by the electrons induced by photon ionization in the formation phase of the stable avalanche ionization were studied. Besides, as the focuses of this article, for the purpose of comparison, the influence of the number density of the inherent seed electrons in optical films on damage mechanism of optical films was studied also. Results reveal that the relative magnitude of the inherent electrons and the electrons induced by photon ionization before the formation of the stable avalanche ionization determines the damage mechanism of optical films.
出处 《光子学报》 EI CAS CSCD 北大核心 2009年第10期2618-2623,共6页 Acta Photonica Sinica
基金 Project supported by the National Natural Science Foundation of China(10804090,10974150) the Free Exploring Foundation of Wuhan University of Technolodge(XJJ2007031) the Scientific Research Starting Foundation of Wuhan University of Technolodge(471-38650322)
关键词 初始电子 激光损伤 光电离 雪崩电离 Inherent electrons Laser induced damage Photon ionization Avalanche ionization
  • 相关文献

参考文献18

  • 1WALKER T H, GUENTHER A H, FELLOW, etal. Pulsed laser-induced damage to thin-film optical coatings-part 2: theory[J]. IEEE J Quantum electronics, 1981, QE-17 (10) : 2053-2065.
  • 2WALKER T H, GUENTHER A H, FELLOW, etal. Pulsed laser-induced damage to thin-film optical coatings-part 1: experiment[J]. IEEE J Quantum electronics, 1981, QE-17 (10) : 2041-2052.
  • 3NEAUPORT J, LAVASTRE E, RAZE G, et al. Effect of electric field on laser induced damage threshold of multilayer dielectric gratings[J]. Optics Express, 2007, 15(19) : 12508- 12522.
  • 4STUART B C, FEIT M D, HERMAN S, et al. Nanosecondto- femtosecond laser-induced breakdown in dielectrics[J].Phys RevB, 1996, 53(4): 1749 -1761.
  • 5STUART BC, FElT M D, RUBENCHIK A M, etal. Laserinduced damage in dielectrics with nanosecond to subpicoseeond pulses[J]. PhysRev Lett, 1995, 74(12) : 2248- 2251.
  • 6BLOEMBERGEN N. Laser induced electric breakdown in solids[J]. IEEE J Quantum Electron 1974, QE-10(3):375- 286.
  • 7KAISER A, RETHFELD B, VICANEK M, et al. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses[J]. Phys Rev B, 2000, 61 (7) 11437-11450.
  • 8SHEN Xue chu. Semiconductor optical spectrums and optical property [M]. Beijing: Scientific publishers, 2002.
  • 9DU D, LIU X, KORN G, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J].Appl Phys Lett, 1994, 64(23) = 3071-3073.
  • 10JASAPARA J, NAMPOOTHIRI A V V, RUDOLPH W, et al. Femtosecond laser pulse induced breakdown in dielectric thin films[J]. Phys Rev B, 2001, 63(4) : 045117-1-5.

二级参考文献27

  • 1徐世珍,贾天卿,徐至展,李晓溪,冯东海,孙海轶,李成斌,王晓峰.飞秒激光脉冲作用下氧化镁的烧蚀及其超快动力学过程[J].光子学报,2006,35(8):1126-1129. 被引量:4
  • 2陈晨,辛国锋,刘锐,瞿荣辉,方祖捷.半导体激光器热弛豫时间测试技术研究[J].光子学报,2006,35(8):1142-1145. 被引量:3
  • 3赵刚,郝秋龙,齐文宗,陈建国.超短脉冲激光辐照下金属薄膜的热行为[J].光子学报,2007,36(1):9-12. 被引量:11
  • 4PERRY M D, MOUROU G. Terawatt to petawatt subpieoseeond lasers[J]; Science, 1994,264(5161) :917-924.
  • 5MOMMA C, NOTE S, CHICHKOV B N, et al. Precise laser ablation with ultrashort pulses[J]. Appl Sur Sci, 1997,109: 15-19.
  • 6VOGEL A, NOACK J, HuTTMAN G, et al. Mechanisms of femtosecond laser nano-surgery of cells and tissues[J]. Appl phys B ,2005,81(8) : 1015-1047.
  • 7STUART B C, FEIT M D, HERMAN S, et al. Optical ablation by high -power short-pulse lasers [J]. J Opt Soc Am B,1996,13(2) :459-468.
  • 8ANISIMOV S I, KAPALIOVICH B L, PERELMAN T L, et al. Electron emission from metal surface exposed to ultra-short pulse [J]. Soy Phys JETP, 1974,39 : 375-378.
  • 9FUJIMOTO J G, LIU J M, IPPEN E P. Femtosecond laser interaction with metallic tungsten and non-equil ibrium electron and lattice temperatures[J]. Phys Rev Lett, 1984,53 (19) : 1837-1840.
  • 10QIU T Q,JUHASZ T,SUAREZ C, etal. Femtoseeond laser heating of multi- layer metals-Ⅱ experiments[J]. Int J Heat Mass Transfer, 1994,37(17) : 2799-2808.

共引文献7

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部