期刊文献+

Lyapunov定理的推广 被引量:2

The Generalization of Lyapunov Theorem
下载PDF
导出
摘要 在无穷维复可分希尔伯特空间中,利用算子论的技巧,对通常所说的第一惯性定理和第二惯性定理进行了推广. Using the operator techniques, the general first and second Lyapunov theorems are extended in Hilbert spaces, which are infinite-dimensional and complex-separable.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第10期113-115,共3页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10571113) 陕西科技大学自然科学基金资助项目(ZX07-31)
关键词 Lyapunov定理 惯性 自伴算子 Lyapunov theorem inertia self-adjoint operator
  • 相关文献

参考文献7

二级参考文献21

  • 1[4]程其襄.实变函数与泛函分析基础[M].北京:高等教育出版社,2001.
  • 2[1]Pitt H R.A Note on Bilinear form[J].J Londan Math Soe,1936,11(2):174-180.
  • 3俞鑫泰.Banach空间几何理论[M].上海:华东师范大学出版社,1984..
  • 4Halmos P R. Two Subspaces [J]. Trans Amer Math Soc, 1969, 114:381 - 389.
  • 5Avron J, Seiler R, Simon B. The Index of a Projection [J]. J Funct Anal, 1994, 120(1): 220- 237.
  • 6Gohberg I, Lancaster P, Rodman L. Invariant Subspaces of Matrices with Applications [M]. New York: John Wiley Sons, 1986.
  • 7Baksalary J K, Baksalary O M, Szulc T. A Property of Orthogonal Projectors [J]. Linear Algebra Appl, 2002, 354: 35-39.
  • 8Drnovsek R, Radjavi H, Rosenthal P. A Cheracterization of Commutators of Idempotents [J]. Linear Algebra Appl,2002, 347: 91-99.
  • 9Conway J B. A Course in Functional Analysis [M]. New York: Spring-Verlag, 1985.
  • 10Nees M. Product of Orthogonal Projections as Carleman Operators [J]. Inter Equ Oper Theroy, 1999, 39: 85 - 92.

共引文献6

同被引文献19

  • 1姚喜妍.Hilbert空间H上正交射影对的性质[J].西南师范大学学报(自然科学版),2004,29(6):899-902. 被引量:2
  • 2Kirrinnis P. Fast Algorithms for the Sylvester Equation AX - XB^T = C [J]. Theoret Comput Sci, 2001, 259 (1): 623 - 638.
  • 3Lin Y Q. Minimal Residual Methods Augmented with Eigenvectors for Solving Sylvester Equations and Generalized Sylvester Equations [J]. Applied Mathematics and Computation, 2006, 181(1):487- 499.
  • 4Kaabi A, Kerayechiana A, Toutounian F. A New Version of Successive Approximations Method for Solving Sylvester Matrix Equations [J]. Applied Mathematics and Computation, 2007, 186(1): 638-645.
  • 5Bao L, Lin Y Q, Wei Y M. A New Projection Method for Solving Large Sylvester Equations [J]. Applied Numerical Mathematics, 2007, 57(5): 521-532.
  • 6Sorensen D C, Antoulas A C. The Sylvester Equation and Approximate Balanced Reduction [J]. Linear Algebra Appl, 2002, 352(2): 671-700.
  • 7Zhou B, Duan G R. An Explicit Solution to the Matrix Equation AX-XF^T = BY [J]. Linear Algebra Appl, 2005, 402(3) : 345 -366.
  • 8Djordjevic D S. Explicit Solution of the Operator Equation A^* X-X^* A = B [J]. Journal of Computational and Applied Mathematics, 2007, 200(2) : 701 - 704.
  • 9KITTANEH F. Singular Value Inequalities for Commutators of Hilbert Space Operators [J]. Linear Algebra Appl, 2009, 430(2): 2362-2367.
  • 10BHATIA R, KITTANEH F. Commutators, Pinchings and Spectral Variation [J]. Oper Matrices, 2008, 2(5): 143 - 151.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部