期刊文献+

机动频率自适应的机动目标模糊跟踪算法 被引量:3

A Maneuvering Target Fuzzy Tracking Algorithm with Maneuvering Frequency Adaptive
下载PDF
导出
摘要 分析了基于"当前"统计模型的跟踪算法中,机动频率对滤波算法的影响.提出一种模糊自适应跟踪算法,该算法根据量测新息及其变化率通过模糊推理机制调整"当前"统计模型中的机动频率,以适应不同的目标机动模式.针对直角坐标系下量测模型为非线性方程,采用转换坐标卡尔曼滤波对目标状态进行估计.仿真结果表明:该算法无论跟踪机动目标还是非机动目标,其精度都要优于常规的基于"当前"统计模型的跟踪算法. The effect of maneuvering frequency in current statistical model to filter' s performance is analyzed. Based on fuzzy inference, the maneuvering frequency is adjusted on-line according to the measurement innovation and the change of measurement innovation, and an adaptive tracking algorithm based on current statistical model is proposed. Considering that the measurement equation is nonlinear under right anger coordinate, the debiased converted measurement kalman filter (DCMKF) is adapted to deal with the nonlinear tracked-target problem. The result of simulation shows that the fuzzy algorithm performs better than the conventional algorithm based on current statistical model does.
出处 《战术导弹技术》 2009年第5期56-61,共6页 Tactical Missile Technology
关键词 目标跟踪 “当前”统计模型 机动频率 模糊推理 转换坐标卡尔曼滤波 target tracking current statistical model maneuvering frequency fuzzy inference DCMKF
  • 相关文献

参考文献4

二级参考文献16

  • 1Ding Z, Leung H, Chan K, Zhiwen Z. Model-set adaptation using a fuzzy Kalman filter [J]. Mathematical and Computer Modeling, 2001, 34: 799-812.
  • 2Chan K, Lee V, Leung H. Radar tracking for air surveillance in a stressful environment using a fuzzy-gain filter [J]. IEEE Trans Aerosp Electron Syst, 1997, 5(1): 80-89.
  • 3Romanenko A, Castro J. The unscented filter as a alternative to the EKF for nonlinear state estimation: a simulation case study [J]. Computers and Chemical Engineering, 2004, 28: 347-355.
  • 4Julier S J, Uhlmann J K. Unscented Filtering and Nonlinear Estimation [J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 5宋文尧,卡尔曼滤波,1991年
  • 6丁鹭飞,雷达系统
  • 7A.帕普里斯著,保铮等译.概率随机变量与随机过程[M].西北电讯工程学院出版社,1986.
  • 8C.C.古德温,孙贵生.自适应滤波预测与控制[M].科学出版社,1992.
  • 9Don Lerro, Yaakov Bar-shalom. Tracking with Debiased consistent converted Measurements versus EKF [J].IEEE Trans. On AES, 1993, 29 (3): 1015-1022.
  • 10Yaakov Bar-Shalom. A Tutorial on Multitarget-multisensor Tracking and Fusion [J]. IEEE National Radar conference, 1997, (5).

共引文献82

同被引文献34

  • 1任少伟,王睿,张平定.基于机动频率自适应的目标跟踪算法[J].空军工程大学学报(自然科学版),2004,5(5):32-35. 被引量:14
  • 2刘昌云,刘进忙,陈长兴,李松.机动目标跟踪的机动频率自适应算法[J].控制理论与应用,2004,21(6):961-965. 被引量:19
  • 3范小军,刘锋,秦勇,张军.基于STF的“当前”统计模型及自适应跟踪算法[J].电子学报,2006,34(6):981-984. 被引量:46
  • 4汤琦,黄建国,杨旭东,冯西安.基于转换量测的水下目标跟踪[J].探测与控制学报,2007,29(1):36-40. 被引量:3
  • 5张保山,徐国亮,吴一全.基于坐标转换的卡尔曼交互式多模型滤波算法[J].指挥控制与仿真,2007,29(5):32-35. 被引量:5
  • 6LI X R, JILKOV V R. Survey of Maneuvering Target Tracking-Part 1 : dynamic models [ J ]. IEEE Trans. on Aerospace and Electronic Systems, 2003,39 ( 4 ) : 1334 - 1364.
  • 7JIKOV V P,ANGELOVA D S, Semerd jiev T A. Design and Comparison of Mode-set Adaptive 1MM Algorithms for Maneuvering Target Tracking [ J 1. IEEE Trans. on Aerospace and Electronic Systems, 1999,35 ( 1 ). 343 - 350.
  • 8ABDOLREZA D T, NASSER S. A Novel Adaptive Track- ing Algorithm for Maneuvering Targets Based on Infor- mation Fusion by Neural Network [ C ] //Proc. of the IEEE International Conference on " Computer as a Tool" ,2007:818 -822.
  • 9ABDOREZA D T, NASSER S. A Hybrid Fuzzy Adap- tivetracking Algorithm for Maneuvering Targets [ C ] // Proc ofthe IEEE International Conference on Fuzzy Sys- tems ,2008 : 1869 -1873.
  • 10CHEN J L,HOU X D,QIN Z, et al. A Novel Adaptive Estimator for Maneuvering Targets [ C ] //Proc. of the IEEE International Conference on Mechatronics and Au- tomation, 2007 : 3756 -3760.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部