期刊文献+

一种基于数据挖掘的入侵检测方法 被引量:2

A Method of Intrusion Detection Based on Mining Technology
下载PDF
导出
摘要 本文提出一种基于频繁模式数据挖掘的方法,主要以主机系统日志作为数据源,对其进行频繁模式挖掘分析,实现了基于主机的入侵检测模型的设计。经实验证明,该方法能够有效侦测对主机的入侵行为。 In this paper, we put forward a method of intrusion detection based frequent pattern data mining. We used the host system log as main data source to analyze with frequent pattern data mining. And we achieved a host - based intrusion detection model design. The experimental results proved that this method can effectively detect intrusions on the host.
出处 《长春师范学院学报(自然科学版)》 2009年第5期30-32,共3页 Journal of Changchun Teachers College
关键词 入侵检测 频繁模式挖掘 系统日志 intrusion detection frequent pattern mining system log
  • 相关文献

参考文献3

  • 1D. E Denning. An Intrusion Detection Model[J]. IEEE Transaction on Software Engineering, 1987(2):222- 232.
  • 2Wenke Lee,Salvatore J.Stolfo,Kui W.Mok. A Data Mining Framework for Building Intrusion Detection Models[C]. In Proceedings of the 1999 IEEE Symposium on Security and Priacy, 1999.
  • 3蒋嶷川,田盛丰.入侵检测中对系统日志审计信息进行数据挖掘的研究[J].计算机工程,2002,28(1):159-161. 被引量:22

二级参考文献5

  • 1Agrawal R, Strikard R. Fast Algorithms for Mining Association Rules.In Proceedings of the 20th ULDB Conferance,Santiago, Chile, 1994
  • 2Klemettinen M,Mannila H,Ronkainen P, et al.Finding Interesting Rules from Large Sets of Discovered Association Rules. In Proceedings of the 3rd Intemational Conference on Information and Knowledge Management(CIKM'94),Gainthersburg, MD, 1994:401-407
  • 3Stolfo S L, Promidis A L.Tselepis S,et al. JAM:Java Agents for Metalearning Overdistributed Databases. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining,Newport Beach,CA,AAAI Press, 1997-08:74-81
  • 4刘美兰,姚京松.审计跟踪与入侵检测[J].计算机工程与应用,1999,35(7):12-15. 被引量:12
  • 5刘明吉,王秀峰,黄亚楼.数据挖掘中的数据预处理[J].计算机科学,2000,27(4):54-57. 被引量:127

共引文献21

同被引文献19

  • 1耿震华,侯彬彬,陆菊康.基于SNMP的主动入侵检测系统的设计与实现[J].计算机工程与设计,2006,27(22):4343-4346. 被引量:2
  • 2夏磊,蒋建中,高志昊.入侵诱骗、入侵检测、入侵响应三位一体的网络安全新机制[J].计算机应用与软件,2007,24(4):171-173. 被引量:6
  • 3郑君杰,肖军模,刘志华,王晓蕾,王宏涛.基于Honeypot技术的网络入侵检测系统[J].电子科技大学学报,2007,36(2):257-259. 被引量:12
  • 4Lee Joong-Hee, Lee Jong-Hyouk, Sohn Seon-Gyoung. Effective Value of Decision Tree withKDD99 Intrusion Detection Datasets for Intrusion Detection System[C]. ICACT 2008:Phoenix Park, Korea Feb. 17-20, 2008:1171-1175.
  • 5Depren, M. Topallar, E. Anarim, M. Kemal Ciliz. An intelligentintrusion detection system (IDS) for anomaly and misuse detection incomputer networks[J]. Expert Systems with Applications, 2005, 29(4): 713-722.
  • 6Lee W, Stolfo S. Data Mining Approaches for Intrusion Detection[R]. Proc of the Seventh USENIX Securtiy Symposium, Colorado, USA, 1998:6-9.
  • 7Denatious D K,John A. Survey on data mining techniques to enhance intrusion detection[J]. ICCC,2012( 1 ):1-5.
  • 8ProvosN,HolzT.虚拟蜜罐从僵尸网络追踪到入侵检测[M].张浩军,李景峰,等译.北京:中国水利水电出版社,2011.
  • 9序列挖掘模式.[EB/OL].(2012-04-24)http://site.douban.com/widget/notcs/108962/note/S8480888.
  • 10周伟良,乐毅,张友华.基于数据挖掘的自适应入侵检测系统[J].合肥工业大学学报(自然科学版),2008,31(5):768-770. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部