摘要
把亚纯函数的分担值和推广了的球面导数相结合,得到了如下结果:设F是区域D内的亚纯函数族,若F中的任意函数f(∈F)的零点重数至少是k(k是正整数),f=0当且仅当f(k)=0,且当z∈E(1,f(k))时,存在正整数M(<1),使得f(k)(z)1+f(z)k+1≤M则F在D内正规.
In this paper,the author combines shared values of meromorphic functions with spherical derivative extended and proves the following theorem: Let F be a family of meromorphic functions in an area D,all of whose zeros are of multiplicity at least k,k is a positive integer number.If f∈F,f=0 if and only if f^(k)=0,and suppose that there exists a positive integer M(〈1) such that |f^(k)(z)|/1+|f(z)|^k+1≤M whenever z∈E-(1,f^(k)),then F is normal.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第5期29-31,共3页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
亚纯函数
正规定则
分担值
球面导数
meromorphic function
normal criteria
shared values
spherical derivative