期刊文献+

核苷酸切除修复对UVB光损伤的识别机制

Recognition Mechanism of Nucleotide Excision Repair to UVB-induced Photodamages
下载PDF
导出
摘要 中波紫外线(UVB)会对皮肤造成各种损伤,这些都根源于UVB对皮肤细胞DNA的光损伤。光损伤产物主要有环丁烷嘧啶二聚体(CPD)和6-4光产物(6-4PP)两类,还包括少量的氧化损伤。CPD和6-4PP的修复是由核苷酸切除修复(NER)执行的。NER可分为全基因组核苷酸切除修复(GGR)和转录耦联核苷酸切除修复(TCR)两个亚途径。识别因子XPC通过一种不直接识别损伤本身的机制在GGR识别过程中发挥作用;在TCR识别过程中强调了关键因子CSB单体及二聚体两种形式的转换。在染色质水平上,DDB介导的泛素化作用是NER识别过程中重要的调控要素。另外,完成使命的识别因子的最终走向也是NER途径中的一个重要环节。通过分析上述生化过程,较清楚地总结了GGR及TCR对UVB导致的光损伤的识别机制。 The skin injury caused by ultraviolet B (UVB) can trace back to the UVB-induced DNA photodamages. Cyclobutyl pyrimidine dimers (CPDs) , (6--4) photoproducts (6-4PPs) and some oxidative damages constitute the most important photodamages. Nucleotide excision repair (NER) is involved in the removal of CPDs and 6-4PPs. NER is composed of global genome nucleotide excision repair (GGR) and transcription-coupled nucleotide excision" repair (TCR). The recognition mechanisms of GGR and TCR to UVB-induced photodamages were summarized: Xeroderma Pigmentosum group C ( XPC), the recognition factor in GGR, executed its function avoiding direct contacting with lesions; the conversion between monomer and dimer of cockayne syndrome B protein (CSB) was underlined in the recognition of TCR; ubiquitylation mediated by DNA damage binding protein (DDB) played an important role in NER recognization at chromatin level; moreover, the fate of the recognition factors (XPC, RNAPIIo) was also discussed.
出处 《激光生物学报》 CAS CSCD 2009年第5期661-668,共8页 Acta Laser Biology Sinica
基金 国家自然科学基金项目(60778047) 广东省自然科学基金项目(06025080)
关键词 中波紫外线(UW) 核苷酸切除修复(NER) 全基因组核苷酸切除修复(GGR) 转录耦联核苷酸切除修复(TCR) 识别机制 ultraviolet B nucleotide excision repair global genome nucleotide excision repair transcription-coupled nucleotide excision repair recognition mechanism
  • 相关文献

参考文献36

  • 1MARROT L, MEUNIER J R. Skin DNA Photodamage and Its Biological Consequences [J]. J Am Acad Dermatol, 2008, 58 (5 Suppl 2) :S139-148.
  • 2GILLET L C, SCHA RER O D. Molecular Mechanisms of Mammalian Global Genome Nucleotide Excision Repair [ J]. Chem Rev, 2006, 106(2) :253-276.
  • 3VOLKER M, MONE M J, KARMAKAR P, et al. Sequential Assembly of the Nucleotide Excision Repair Factors in vivo [ J]. Mol Cell, 2001, 8(1 ) :213-224.
  • 4HESS M T, SCHWITFER U, PETRETFA M, et al. Bipartite Substrate Discrimination by Human Nucleotide Excision Repair [J]. Proc Natl Acad Sci USA, 1997, 94(13) :6664-6669.
  • 5MAILLARD O, SOLYOM S, NAEGELI H. An Aromatic Sensor with Aversion to Damaged Strands Confers Versatility to DNA Repair [J]. PLoS Biol, 2007, 5(4) :e79.
  • 6MIN J H, PAVLETICH N P. Recognition of DNA Damage by the Radd Nucleotide Excision Repair Protein [ J ]. Nature, 2007, 449(7162) :570-575.
  • 7SUGASAWA K, HANAOKA F. Sensing of DNA Damage by XPC/Rad4:One Protein for Many Lesions [ J]. Nat Street Mol Biol, 2007, 14(10) :887488.
  • 8NG J M, VERMEULEN W, VAN DER HORST G T, et al. A Novel Regulation Mechanism of DNA Repair by Damage-Induced and RAD23-Dependent Stabilization of Xeroderma Pigmentosum Group C Protein [J]. Genes Dev, 2003, 17(13) :1630-1645.
  • 9YOU J S, WANG M, LEE S H. Biochemical Analysis of the Damage Recognition Process in Nucleotide Excision Repair [ J]. J Biol Chem, 2003, 278(9) :7476-7485.
  • 10LAINEJ P, EGLY J M. Initiation of DNA Repair Mediated by a Stalled RNA Polymerase IIO [ J ]. EMBO J, 2006, 25 ( 2 ) : 387 -397.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部