期刊文献+

锐钛矿相TiO_2光学性质的计算 被引量:6

Calculations of Optical Properties in Anatase TiO_2
下载PDF
导出
摘要 TiO2具有良好的光学、电学和化学性质,锐钛矿相TiO2具有更突出的光催化特性,是一种有广泛用途的宽禁带氧化物半导体。利用基于密度泛函理论的第一原理全电势线性缀加平面波方法计算锐钛矿相TiO2介电函数的实部、虚部和光学吸收系数,其中能隙值利用剪刀算符修正为3.2eV。计算结果与实验符合得很好,同时说明广义梯度近似与局域密度近似相比对锐钛矿相TiO2光学性质的计算没有明显的改善。 TiO2 is a wide-bandgap semiconductor with wide applications range, the anatase phase TiO2 has the better photocatalysis properties. In this paper, the optical properties of TiO2 with the anatase structure were in- vestigated using the full-potential linearized augmented plane-wave method (FPLAPW) in the framework of the density functional theory (DFT). We amended band gaps by using a scissor operator, so that the minimum band gap shift becomes 3.2 eV in agreement with the experiment. Optical property calculation showed that a strong optical anisotropy near the absorption edge is observed. The calculated dielectric constants at ω→0 are ε1xy(O) (LDA) =5.52, ε1x(0)(LDA) =5.43 and ε1xy(0) (GGA) =5.42,ε1z(0) (GGA) =5.26. The dielectric functions have two main peaks. One is located between 4 and 6 eV, and the other is found at 8 -9 eV. As one can imagine, the two peaks are due to transition from states in the upper part of the valence bands (states) to states in the two lower Ti-3d conduction bands (π*-dxy, and σ'* states). In a higher energy region ( 〉 7 eV) , the imaginary part of the calculated dielectric function peak positions are located at higher energies compared with experiment. Similar results were reported in calculations for the ruffle structure. The disagreement of the peak positions of the dielectric functions in a higher energy region suggests that a more sophisticated method going beyond the scissors operator to describe the quasiparticle spectrum of TiO2 is required. If we define the optical band edge as the photon energy where the value of α = 10^-4 cm ^-1, then the band edge Exy (LDA) = 3.52 eV, E. (LDA) = 3.93 eV and Exy (GGA) = 3.57 eV, Ex (GGA) = 3.96 eV, the results are in agreement with experiment, and the generalized gradient approximation ( GGA ) gives no improvement in comparison with the local density approximation (LDA) by investigating the optical properties.
作者 陈华
出处 《发光学报》 EI CAS CSCD 北大核心 2009年第5期697-701,共5页 Chinese Journal of Luminescence
关键词 第一原理计算 锐钛矿 TIO 光学性质 介电函数 ab initio anatase TiO2 optical properties dielectric function
  • 相关文献

参考文献10

  • 1Mikami M, Nakamura S, Kitao O, et al. Lattice dynamics and dielectric properties of TiO2 anatase: A first-principles study [J]. Phys. Rev. B, 2002, 66(15):155213-1-6.
  • 2Asahi R, Taga Y, Mannstadt W, et al. Electronic and optical properties of anatase TiO2 [ J ]. Phys. Rev. B, 2000, 61 ( 11 ) :7459-7465.
  • 3陈强,曹红红.Ab initio calculations of electronic structure of anatase TiO2[J].Chinese Physics B,2004,13(12):2121-2125. 被引量:6
  • 4Tang H, Berger H, Schmid P E, et al. Photoluminescenece in TiO2 anatase single crystals [ J]. Solid State Communication, 1993, 87(9) :847-850.
  • 5Mo S D, Ching W Y. Electronic and optical properties of three phases of titanium dioxide:rutile, anatase, and brookite [J]. Phys. Rev. B, 1995, 51(19):13023-13032.
  • 6Gonzalez R J, Zallen R. Infrared reflectivity and lattice fundamentals in anatase TiO2 [ J ]. Phys. Rev. B, 1997, 55 ( 11 ) : 7014-7017.
  • 7Wemple S H. Optical oscillator strengths and excitation energies in solids, liquids, and molecules [ J]. J. Chem. Phys. , 1977, 67(5) :2151-2168.
  • 8Hosaka N, Sekiya K, Satoko C, et al. Optical properties of single-crystal anatase TiO2 [J]. J. Phys. Soc. Jpn. , 1997, 66(3) :877-880.
  • 9Cangiani G. Ab-initio Study of the Properties of TiO2 Rutile and Anatase Polytypes [ D]. Switzerland: Institut de theories des phenomenes physiques, Ecole polytechnique federalede lausanne, 2003.
  • 10Jellison G E, Jr. Boatner L A, Budai J D, et al. Spectroscopic ellipsometry of thin film and bulk anatase ( TiO2 ) [ J ]. J. Appl. Phys. , 2003, 93(12) :9537-9541.

二级参考文献31

  • 1Mikami M, Nakamura S, Kitao O, Arakawa H and Gonze X 2000 Jpn. J. Appl. Phys. 39 847
  • 2Lazzeri M, Vittadini A and Selloni A 2001 Phys. Rev. B63 155409
  • 3Li G H, Wu Y C and Zhang L D 2001 Chin. Phys. 10 148
  • 4Wang X, Zhang Y and Deng H H 2001 Chin. Phys. 10 s54
  • 5Deng H H, Wang X and Yu T 2001 Chin. Phys. lO s59
  • 6Jeong K S, Chang C, Sedlmayr E and Siilzle D 2000 J.Phys. B: At. Mol. Opt. Phys. 88 3417
  • 7Fahrni A, Minot C, Silvi B and Caus~ M 1993 Phys. Rev.B 47 11717
  • 8Asahi R, Taga Y, Mannstadt W and Freeman A J 2000Phys. Rev. B 61 7459
  • 9BergstrSm R, Lunell Sand Eriksson L A 1996 Int. J.Quantum Chem. 59 427
  • 10Hagfeldt A, Lunell S and Siegbahn H O G 1994 Int. J.Quantum Chem. 49 97

共引文献5

同被引文献72

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部