摘要
在原对偶遗传算法(PDGA)的基础上,提出一种双概率原对偶遗传算法(DPPDGA).引入弱势基因位值与强势基因位值的概念,对二者赋予不同的对偶映射概率,并对两个对偶概率进行适应性调整.比较原始算法,改进算法使种群具有更理想的多样性,并利于种群较快地收敛到满意解.仿真结果表明,该算法在0-1动态优化问题的求解中具有更好的性能.
On the basis of primal-dual genetic algorithm (PDGA), a new double-probability-based primal-dual(DPPDGA) genetic algorithm is proposed for 0-1 dynamic optimization problems. The concepts of inferior-allele and superior-allele are introduced, which are given different probabilities respectively for dual mapping, and they are adjusted adaptively. The algorithm has improvement on keeping diversity and guaranteeing convergence rate of population. The numerical experiment results show that the proposed algorithm has better performance for solving 0-1 dynamic optimization problems than that of PDGA.
出处
《系统工程学报》
CSCD
北大核心
2009年第5期636-640,共5页
Journal of Systems Engineering
基金
国家自然科学基金资助项目(70931001
70771021)
创新群体资助项目(60821063)
国家教育部博士点基金资助项目(200801450008)
关键词
遗传算法
动态优化
双概率
原对偶映射
genetic algorithm
dynamic optimization
double-probability
primal-dual mapping