期刊文献+

混合核支持向量回归及对社会用电量的预测 被引量:3

SVR using Mixtures of Kernels and Its Application in Forecasting of Electricity Consumption of Society
下载PDF
导出
摘要 介绍了混合核支持向量回归的方法,并运用该方法对广州市每月的全社会用电量进行了预测.结果表明,混合核支持向量回归的方法具有较好的预测性能,有一定的实用价值. This paper introduces the methods for support vector regression of mixtures of kernels and applies the methods to forecast monthly electricity consumption of society in Guangzhou. The result shows that this method is effective and practical.
出处 《重庆工学院学报(自然科学版)》 2009年第10期50-52,共3页 Journal of Chongqing Institute of Technology
基金 广州市创新基金资助项目(2007V41C0301)
关键词 支持向量回归 混合核 全社会用电量 support vector regression (SVR) mixtures of kernels electricity consumption of society
  • 相关文献

参考文献9

二级参考文献35

共引文献195

同被引文献17

  • 1王正群,陈世福,陈兆乾.并行学习神经网络集成方法[J].计算机学报,2005,28(3):402-408. 被引量:36
  • 2杨种学,杨宁.基于BP神经网络的异常入侵检测方法[J].南京晓庄学院学报,2006,22(6):82-86. 被引量:2
  • 3颜根廷,马广富,肖余之.一种混合核函数支持向量机算法[J].哈尔滨工业大学学报,2007,39(11):1704-1706. 被引量:21
  • 4Zheng DN,Wang JX,Zhao YN.Non-flat function estimation with a multi-scale support vector regression[].Neurocomputing.2006
  • 5Vapnik VN.The Nature of Statistical Learning Theory[]..2000
  • 6Lee Y C.Application of support vector machines to corporate credit rating prediction[].Expert Systems With Applications.2007
  • 7LEE M C.Using support vector machine with a hybridfeature selection method to the stock trend prediction[].Expert Systems With Applications.2009
  • 8Lewis D P,Jebara T,Noble W S.Nonstationary kernel combination[].Proceedings of therd International Conference on Machine Learning.2006
  • 9Bach F.R.Consistency of the group Lasso and multiple kernel learning[].The Journal of Machine Learning Research.2008
  • 10Cristianini N,Shawe-Taylor J.An introduction to support vector machines and other kernel-based learning methods[]..2000

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部