期刊文献+

一种基于量子粒子群算法的模糊c-均值聚类

A fuzzy c-mean clustering based on quantum-behaved particle swarm optimization
下载PDF
导出
摘要 把QPSO算法与模糊c-均值(FCM)算法相结合提出一种混合模糊聚类算法(QPSO-FCM),将FCM算法中基于梯度下降的迭代过程用新算法进行替代,能够在一定程度上克服FCM算法易陷入局部极小的缺陷,降低FCM算法的初值敏感度.通过典型的Wine的数据实验结果证明,改进后的新算法具有良好的收敛性,聚类效果也有一定的改善. The QPSO have the less parameters and higher convergent capability of the global optimizing than Particle Swarm Optimization algorithm (PSO). A new mixed fuzzy clustering algorithm that Uses Quantum-behaved Particle Swarm Optimization (QPSO) algorithm and combines with Fuzzy C-means (FCM) is proposed in this paper. So the iteration algorithm is replaced by the QPSO based on the gradient descent of FCM, which makes the algorithm have a strong global searching capacity and avoids the local minimum problems of FCM in a way. At the same time, FCM is no longer a large degree dependent on the initialization values. The simulation result proves that compared with FCM the new algo- rithm not only has the favorable convergence but also has obviously improved the clustering effect.
作者 王浩 陈蕴
出处 《阜阳师范学院学报(自然科学版)》 2009年第3期40-43,共4页 Journal of Fuyang Normal University(Natural Science)
基金 安徽省教育厅自然科学研究项目(2006KJ086B) 安徽省计算机实验实训示范中心项目资助
关键词 模糊C-均值算法 粒子群算法 量子粒子群算法 fuzzy c-mean clustering algorithm particle swarm optimization quantum-behaved particle swarm optimization
  • 相关文献

参考文献6

  • 1Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M ]. New York: Plenum Press, 1981.
  • 2Bezdek J C, Hathaway R J, Sabin M J, Tucker W. Convergence theory for fuzzy c-means: Counter-examples and repairs[J]. IEEE Transactions on SMC, 1987,17(5): 873-877.
  • 3J Kennedy,R C Eberhart. Particle Swarm Optimization[C]. Proceedings of the IEEE International Joint Conference on Neural Networks, 1995: 1942-1948.
  • 4Sun J, Feng B, Xu W B. Particle Swarm Optimization with Particles Having Quantum Behavior [C]. Proceedings of 2004 Congress on Evolutionary Com- putation, 2004 : 325-331.
  • 5Sun J, Xu W B. A Global Search Strategy of Quantum-behaved Particle Swarm Optimization [C]. In: Proceedings of IEEE conference on Cybernetics and Intelligent Systems, 2004 :111 - 116.
  • 6刘笛,朱学峰,苏彩红.一种新型的模糊C均值聚类初始化方法[J].计算机仿真,2004,21(11):148-151. 被引量:19

二级参考文献9

  • 1刘静,钟伟才,刘芳,焦李成.免疫进化聚类算法[J].电子学报,2001,29(z1):1868-1872. 被引量:43
  • 2薛忠,谢维信.模糊C均值聚类算法的一种初始化方法[J].系统工程与电子技术,1995,17(11):64-69. 被引量:12
  • 3M C Hung, D L Yang. An efficient fuzzy C-means clustering algorithm[C]. Proceedings of IEEE International Conference on Data Mining. 2001, 29Nov-2Dec, 225-232.
  • 4J Derek. Smith. Immunological Memory is Associative[C]. International Workshop on the Immunity-Based Systems, 1996.
  • 5L N De Castro & F J Von Zuben. An Immunological Approach to Initialize Feed-forward Neural Network Weights[C]. Proc. of ICANNGA (Int. Conf. on Artificial Neural Networks and Genetic Algorithms), Prague/C.R., 22-25 April 2001, 126-129.
  • 6L N De Castro & F J Von Zuben. The Clonal Selection Algorithm with Engineering Applications[C]. In Proceedings of GECCO'00, Workshop on Artificial Immune Systems and Their Applications, 2000,36-37.
  • 7N K Jerne. Toward a Network Theory of the Immune System[M]. Ann. Immunol.(Inst. Pasteur) 125C, 1974, 373-389.
  • 8S Endoh, N Yoma, K Yamada. Immune algorithm for n-TSP[C]. Proceedings of IEEE International Conference on Systems, Man, Cybernetics, San Diego, CA, USA, 1998: 3844-384.
  • 9戴晓晖,李敏强,寇纪淞.基于遗传算法的动态聚类方法[J].系统工程理论与实践,1999,19(10):108-110. 被引量:12

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部