期刊文献+

贝伐单抗联合SN-38抑制结肠癌细胞增殖的机制 被引量:2

Combination with SN-38 on human colon cancer LoVo cells
原文传递
导出
摘要 目的探讨贝伐单抗联合伊立替康(CPT-11)的活性代谢产物SN-38对结肠癌细胞增殖的抑制作用及其机制。方法在缺氧条件下,将贝伐单抗和sN-38作用于人结肠腺癌细胞LoVo,应用四甲基偶氮唑蓝(MTT)法,检测药物对细胞增殖的抑制作用。分别采用逆转录聚合酶链反应(RT—PCR)、Western blot和酶联免疫吸附试验(ELISA),分析药物作用后缺氧诱导因子1α(HIF-1α)及血管内皮生长因子(VEGF)在基因和蛋白表达水平的变化;通过药物对丝裂原激活蛋白激酶(MAPK)和磷脂酰三磷酸肌醇-丝苏氨酸蛋白激酶(P13K-AKT)通路的影响,分析贝伐单抗和sN-38的联合作用机制。结果贝伐单抗联合sN-38序贯给药方案较同时给药对细胞增殖的抑制更强,且以先sN-38后贝伐单抗的给药顺序作用最强,IC50值为(0.057±0.009)μmol/L,较相反给药顺序强3.8倍,较同时给药强8.9倍。HIF—1α的表达水平随着缺氧时间的延长而升高,贝伐单抗和sN-38同时作用可显著抑制其表达;VEGF的表达也随着缺氧时间的增加逐渐增加,SN-38作用12h以上可使VEGF表达下降59.4%,200μg/ml的贝伐单抗作用8h几乎可完全抑制VEGF表达,此时加入SN-38仍可使VEGF表达进一步降低。MAPK通路的p-ERK表达随缺氧时间的增加而升高,sN-38和贝伐单抗同时作用可使p-ERK的表达完全阻断,这与两药对HIF-1α的抑制是一致的。ERK的选择性抑制剂PD98059能够增强贝伐单抗对p-ERK的抑制,同时也增加了贝伐单抗对HIF-1α的抑制。p-AKT的表达虽然随着缺氧时间的延长有所升高,但贝伐单抗和sN-38对其影响并不显著。结论VEGF靶向药物联合化疗药物对细胞增殖的抑制是方案依赖性的,贝伐单抗和sN-38通过对HIF-1α和MAPK通路的调控发挥协同作用。 Objective To observe the anti-proliferation effect of bevacizumab and SN-38 (active metabolite of irinotecan) , and investigate the possible mechanisms of these two agents. Methods Human colon cancer LoVo cells were cultured under hypoxic conditions. Inhibition of cell proliferation was evaluated by MTT assay. The drug modulation on HIF-1α, VEGF, ERK and AKT were assessed by the following assays. The mRNA expression of HIF-1α and VEGF were measured by RT-PCR. The protein expression of HIF-1α, ERK and AKT were evaluated by Western blot analysis, and VEGF by ELISA assay. Results Among different combination schedules, Bevacizumab given after SN-38 show most synergistic anti-proliferation effect. Under hypoxic conditions, the expression of HIF-1α and VEGF increased as time accumulated, Bevaeizumab combined with SN-38 almost completely inhibited the expression of HIF-1α and VEGF. Moreover, the MAP kinase pathway was involved in the drug modulation of HIF-1α and VEGF. Conclusion These findings suggest the anti-proliferation effect of bevacizumab and SN-38 was schedule-dependent, and the synergistic effect of Bevacizumab and SN-38 was related to drug modulation of the HIF-1α and MAP kinase pathway.
出处 《中华肿瘤杂志》 CAS CSCD 北大核心 2009年第10期746-751,共6页 Chinese Journal of Oncology
关键词 血管内皮牛长因子 缺氧诱导因子1 Α亚基 基因表达调控 结肠肿瘤 Vascular endothelial growth factor Hypoxia-induciblc factor 1, alpha submit Gene expression regulation Colonic neoplasm
  • 相关文献

参考文献13

  • 1Fuchs CS, Marshall J, Mitchell E, et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J Clin Oncol, 2007, 25:4779-4786.
  • 2Grothey A, Ellis LM. Targeting angiogenesis driven by vascular endothelial growth factors using antibody-based therapies. Cancer J, 2008, 14 : 170-177.
  • 3Powis G, Kirkpatriek L. Hypoxia inducible faetor-lalpha as a cancer drug target. Mol Cancer Ther, 2004, 3:647-654.
  • 4Puppo M, Battaglia F, Ottaviano C, et al. Topotecan inhibits vascular endothelial growth factor production and angiogenic activity induced by hypoxia in human neuroblastoma by targeting hypoxia-inducible factor-1alpha and -2alpha. Mol Cancer Ther, 2008, 7:1974-1984.
  • 5Tas F, Duranyildiz D, Soydinc HO, et al. Effect of maximum-tolerated doses and low-dose metronomic chemotherapy on serum vascular endothelial growth factor and thrombospondin-1 levels in patients with advanced nonsmall cell lung cancer. Cancer Chemother Pharmacol, 2008, 61:721-725.
  • 6Jimeno A, Rubio-Viqueira B, Amador ML, et al. Dual mitogen- activated protein kinase and epidermal growth factor receptor inhibition in biliary and pancreatic cancer. Mol Cancer Ther, 2007, 6 : 1079-1088.
  • 7Li X, Lu Y, Liang K, et al. Requirement of hypoxia-inducible factor-lalpha down-regulation in mediating the antitumor activity of the anti-epidermal growth factor receptor monoclonal antibody cetuximab. Mol Cancer Ther, 2008, 7:1207-1217.
  • 8Belaiba RS, Bonello S, Zahringer C, et al. Hypoxia up-regulates hypoxia- inducible factor-1 alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell, 2007, 18:4691-4697.
  • 9Jin HO, An S, Lee HC, et al. Hypoxic condition- and high cell density-induced expression of Reddl is regulated by activation of hypoxia-inducible factor-1 alpha and Spl through the phosphatidylinositol 3-kinase/Akt signaling pathway. Cell Signal, 2007, 19 : 1393-1403.
  • 10Arsham AM, Plas DR, Thompson CB, et al. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxie stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem, 2002, 277:15162-15170.

二级参考文献30

  • 1徐建明,宋三泰.表皮生长因子受体酪氨酸激酶靶向药物与化疗联合应用的合理设计[J].中华肿瘤杂志,2004,26(6):321-323. 被引量:20
  • 2宋三泰,汤仲明.重视乳癌ER及内分泌治疗的临床研究[J].中华肿瘤杂志,1993,15(2):83-85. 被引量:10
  • 3Mendelsohn J. Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol, 2002,20(18 Suppl):1S-13S.
  • 4Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res, 2001,7:2958-2970.
  • 5Baselga J. The EGFR as a target for anticancer therapy-focus on cetuximab. Eur J Cancer, 2001,37( Suppl 4):S16-S22.
  • 6Ciardiello F, Caputo R, Bianco R, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res, 2001,7:1459-1465.
  • 7Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol, 2003,21:2237-2246.
  • 8Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial-INTACT 2. J Clin Oncol, 2004,22:785-794.
  • 9Herbst RS. ZD1839: targeting the epidermal growth factor receptor in cancer therapy. Expert Opin Investig Drugs, 2002,11:837-849.
  • 10Sewell JM, Macleod KG, Ritchie A, et al. Targeting the EGF receptor in ovarian cancer with the tyrosine kinase inhibitor ZD 1839 (''Iressa'').Br J Cancer, 2002,86:456-462.

共引文献20

同被引文献18

  • 1贺芳,曾耀英,王通,邢飞跃,林羿,梁佩燕,肇静娴.喜树碱诱导的HL-60细胞凋亡过程中线粒体的变化[J].细胞与分子免疫学杂志,2006,22(2):144-147. 被引量:1
  • 2Ramesh M,Ahlawat P,Srinivas N R.Irinotecan and its active metabolite,SN-38:review of bioanalytical methods and recent update from clinical pharmacology perspectives[J].Biomed Chromatogr,2010,24(1):104-123.
  • 3Chou T C.Drug combination studies and their synergy quantification using the Chou-Talalay method[J].Cancer Res,2010,70(2):440-446.
  • 4Inoue Y,Tanaka K,Hiro J,et al.In vitro synergistic antitumor activity of a combination of 5-fluorouracil and irinotecan in human colon cancer[J].Int J Oncol,2006,28(2):479-486.
  • 5Horiike A,Kudo K,Miyauchi E,et al.Phase Ⅰ study of irinotecan and gefitinib in patients with gefitinib treatment failure for non-small cell lung cancer[J].Br J Cancer,2011,105(8):1131-1116.
  • 6Adams D J,Sandvold M L,Myhren F,et al.Anti proliferative activity of ELACY(CP-4055)in combination with cloretazine(VNP40101M),idarubicin,gemcitabine,irinotecan and topotecan in human leukemia and lymphoma cells[J].Leuk Lymphoma,2008,49(4):786-797.
  • 7Minderman H,O'Loughlin K L,Smith P F,et al.Sequential administration of irinotecan and cytarabine in the treatment of relapsed and refractory acute myeloid leukemia[J].Cancer Chemother Pharmacol,2006,57(1):73-83.
  • 8Wallin A,Svanvik J,Holmlund B,et al.Anticancer effect of SN-38 on colon cancer cell lines with different metastatic potential[J].Oncol Rep,2008,19(6):1493-1498.
  • 9Gupta V,Su Y S,Samuelson C G,et al.Irinotecan:a potential new chemotherapeutic agent for atypical or malignant meningiomas[J].J Neurosurg,2007,106(3):455-462.
  • 10Liu Y,Xing H,Weng D,et al.Inhibition of Akt signaling by SN-38 induces apoptosis in cervical cancer[J].Cancer Lett,2009,274(1):47-53.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部