期刊文献+

线性回归模型系数的一个新的有偏估计

New Class of Biased Estimators of Coefficients in Linear Regression Models
下载PDF
导出
摘要 针对引起线性回归模型病态的根本原因,提出回归系数的S-R估计,讨论其均方误差的最优化,对有偏估计的改进进行研究。证明可以选择参数,使它在均方误差的意义下优于系数的Stein估计和LS估计,给出参数的最优值。然后讨论其偏差,证明它的可容许性。 Aiming at the fundamental reason of the ill-condition in the linear regression models, presents the S-R estimators of the coefficients, discusses the optimization of its mean squares error and studies the improvement of biased estimators. It is proved that the Stein estimators and the LS estimators can be improved under the mean squares error criterion by choosing appropriate parameters respectively, and the optimal values of the parameters are also obtained. Its deviation from the regression coefficients is also studied. At last its admissibility is proved.
作者 杨斌 张建军
出处 《兵工自动化》 2009年第11期36-38,41,共4页 Ordnance Industry Automation
基金 国家自然科学基金项目(60774029) 海军工程大学自然科学基金项目(HGDJJ05005 HGDJJ07007)
关键词 有偏估计 广义c-K估计 岭估计 广义岭估计 均方误差 可容许性 Biased estimators Generalized c-K estimators Ridge regression estimators Generalized ridge regression estimators Mean squares error Admissibility
  • 相关文献

参考文献11

  • 1Deng W S, Chu C K, Cheng M Y. A study of local ridge regression estimators[J]. Journal of Statistics Planning and Inference, 2001, 8(9): 225-238.
  • 2Wan A T K. On generalized ridge regression estimators under collinearity and balanced loss[J]. Applied Mathematics and Computation, 2002, 11(9): 455-467.
  • 3Hawkins D M, Yin X Y. A faster algorithm for ridge regression of reduced rank data[J]. Computational Statistica & Data Analysis, 2002, 4(4): 253-262.
  • 4Ohtani K. Inadimissibility of the Stein-rule estimator under the balanced loss function[J]. Journal of Econometrics, 1999, 8(4): 193-201.
  • 5Hoeral A E, Kennard R W. Ridge regression: biased estimation for non-orthogonal problems[J]. Technometrics, 1970, 1(12): 55-67.
  • 6Hoeral A E, Kennard R W. Ridge regression: applications to non-orthogonal problems[J]. Technometrics, 1970, 1(12): 69-82.
  • 7Stein C M. Multiple regression contributions to probability and statistics [C]//. Essays in Honor of Harold Hotelling. Stanford: Stanford University Press, 1960.
  • 8Hocking R R, Speed F M, Lynn M J. Aclass of estimators in linear regression[J]. Technometrics, 1976, 2(6): 425-437.
  • 9张建军,吴晓平.线性回归模型系数岭估计的改进研究[J].海军工程大学学报,2005,17(1):54-57. 被引量:18
  • 10张建军,吴晓平,刘敏林.线性回归模型系数Stein估计的改进研究[J].海军工程大学学报,2004,16(4):22-25. 被引量:11

二级参考文献11

  • 1张建军,吴晓平,刘敏林.线性回归模型系数Stein估计的改进研究[J].海军工程大学学报,2004,16(4):22-25. 被引量:11
  • 2[1]Hoerl A E, Kennard R W. Ridge regression: biased estimation for non-orthogonal problems [J]. Technometrics,1970,12:55-67.
  • 3[2]Hoerl A E, Kennard R W. Ridge regression: applications to non-orthogonal problems [J]. Technometrics,1970,12:69-82.
  • 4[3]Stein C M. Multiple regression contributions to probability and statistics [A]. Essays in Honor of Harold Hotelling [C]. Stanford: Stanford University Press,1960.
  • 5[4]Deng W S, Chu C K, Cheng M Y. A study of local ridge regression estimators [J]. Journal of Statistics Planning and Inference, 2001,93: 225- 238.
  • 6[5]Wan A T K. On generalized ridge regression estimators under collinearity and balanced loss [J]. Applied Mathematics and Computation, 2002,129: 455 - 467.
  • 7[6]Hawkins D M, Yin X Y. A faster algorithm for ridge regression of reduced rank data [J]. Computational Statistics & Data Analysis, 2002,40: 253- 262.
  • 8[7]Ohtani K. Inadmissibility of the Stein-rule estimator under the balanced loss function [J]. Journal of Econometrics, 1999,88:193-201.
  • 9[8]Hocking R R, Speed F M, Lynn M J. A class of biased estimators in linear regression [J]. Technometrics, 1976,18:425-437.
  • 10王松桂.线性模型参数估计的新进展[J].数学进展,1985,(14):193-204.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部