期刊文献+

湖底沉积物分类的新方法研究 被引量:4

A New Practical Way for Classifying LakeBottom Sediment
下载PDF
导出
摘要 从小波分析——多分辨率分解的观点出发,对不同的实测湖底沉积物的回波,用Daubechies小波进行了Malat塔式分解,从中提取某些特征,用人工神经网络进行了分类,取得了对三类沉积物识别,平均正确识别率90%以上,对五类沉积物识别,平均正确识别率87%以上的较好结果。另外,对采取不同的分解特征进行分类的效果。 Classification of lakebottom and continentalshelf sediment is essential to certain applications, both civil and military. Such classification is the information indispensable for understanding shallowwater sound propagation and for shallowwater target identification. We utilized wavelet analysis to do a better job of lakebottom sediment classification. We obtained wideband sediment echo features, both in the time and frequency domain, with Mallat pyramid algorithm based on Daubechies type wavelet. Classification and recognition of experimentally measured lakebottom sediment echoes were done with: (1) an improved algorithm in the M.S. thesis of Huang Haining (H.N.Huang) , (2) several multilayer perceptrons (MLP) designed by us. A high recognition accuracy was obtained by the abovementioned practical way. For three kinds of sediment, it was above 90%; for five kinds, above 87%.
机构地区 西北工业大学
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 1998年第3期421-426,共6页 Journal of Northwestern Polytechnical University
基金 船舶科研基金
关键词 湖底沉积物 分类 特征提取 小波变换 sediment, classification, wavelet analysis, multilayer perceptron (MLP)
  • 相关文献

参考文献3

  • 1黄海宁,硕士学位论文,1996年
  • 2王正垠,博士学位论文,1995年
  • 3刘贵忠,小波分析及其应用,1992年

同被引文献65

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部