摘要
对Lagrange中值定理"中间点"的渐进性作了定性研究.通过对f(x)在(a,b)内低阶可导情形的研究,发现规律,即把f(x)在(a,b)内低阶可导可推广至n阶连续可导的情形,进而把正整数n推广到正实数m,并得到了更一般性的结论:lim ξ-a/b-a=(1/m+1)^(1/m) b→a.
This paper makes qualitative research on the progressiveness of the intermediate point of Largrange mean value theorem. By studying the situation of f(x) in ( a, b) low order derivableness, we found that f(x) in (a, b) low order derivative can be popularized to the situation of n order continuous derivableness, furthermore, that positive integer n can be popularized to positive real number m, a more generalized conclusion is arrived at:limb→a ζ-a/b-a=m√1/m+1.
出处
《重庆工商大学学报(自然科学版)》
2009年第5期437-438,442,共3页
Journal of Chongqing Technology and Business University:Natural Science Edition