期刊文献+

基于BP-NSGA的注塑参数多目标智能优化设计 被引量:3

Multi-objective intelligent optimization of injection molding parameters based on BP-NSGA
下载PDF
导出
摘要 为获得成型性能最优的注塑参数设计方案,提出了基于BP神经网络和非支配排序遗传算法的注塑参数多目标优化方法。将注塑模结构尺寸参数和注塑工艺参数作为待优化的设计变量,建立了以高质量、低成本、高效率为优化目标的注塑参数优化设计模型。基于非支配排序遗传算法获取给定参数范围内的所有Pareto最优解,并通过建立多输入和多输出的BP神经网络来快速获得非支配排序遗传算法优化进程中所有个体的适应度值。开发了基于BP神经网络与非支配排序遗传算法集成的注塑参数智能优化设计系统,并通过鼠标注塑参数设计实例,验证了其适用性和有效性。 To get the optimal parameter schemes with their molding ability evaluated by comprehensive criteria, a multi-objective optimization approach for injection molding parameters based on Back Propagation (BP) neural network and Non-dominated Sorted Genetic Algorithm (NSGA) was proposed. The mathematical model with high product quality, low cost, and high efficiency as objectives was established for optimizing injection molding parameters related to both mold structures and molding processes. All the Pareto-optimal solutions within the specified parameter region were located based on NSGA and a multi-input multi-output BP network was developed for fast computing the fitness of every individual during the evolution of NSGA. The system for intelligent optimization of injection molding parameters based on the integration of BP network and NSGA was developed, and the feasibility and validity were demonstrated through the optimization of injection molding parameters for manufacturing mice.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2009年第10期1900-1906,共7页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(50705084) 浙江省自然科学基金资助项目(Y1090512) 浙江省教育厅科研资助项目(Y200805452)~~
关键词 注塑参数 多目标 智能优化 PARETO最优集 BP神经网络 遗传算法 injection molding parameter multi-objective intelligent optimization Pareto-optimal set back propagation neural network genetic algorithm
  • 相关文献

参考文献14

  • 1郑占明,刘春太,申长雨.基于遗传算法的注塑模注射速率优化[J].工程塑料应用,2002,30(7):25-28. 被引量:10
  • 2MATHUR R B, FINK K, ADVANI S G. Use of genetic algorithms to optimize gate and vent locations for the resin transfer molding process [J]. Polymer Composites, 1999, 20 (2):167-178.
  • 3KIM B Y, NAM G J, RYU H S, et al. Optimization of filling process in RTM using genetic algorithm[J]. Korea-Australia Rheology Journal, 2000,12 ( 1 ) : 83-92.
  • 4YARLAGADDAPKDV, KHONGCAT. Development of a hybrid neural network system for prediction of process parameters in injection moulding[J]. Journal of Materials Processing Technology,2001,118(1/3):110-116.
  • 5LIAO X P, XIE H M, ZHOU Y J, et al. Adaptive adjustment of plastic injection processes based on neural network [J]. Journal of Materials Processing Technology, 2007, 187/188 (6) :676-679.
  • 6KARATAS C, SOZEN A, ARCAKLIOGLU E, et al. Moldelling of yield length in the mould of commercial plastics using artificial neural networks[J]. Materials and Design, 2007,28 (1):278-286.
  • 7SADEGHI B H M. A BP-neural network predictor model for plastic injection molding process[J]. Journal of Materials Processing Technology,2000,103(3) :411-416.
  • 8KWAK T S, SUZUKI T, BAE W B, et al. Application of neural network and computer simulation to improve surface profile of injection molding optic lens[J]. Journal of Materials Processing Technology, 2005,170 (1/2) : 24-31.
  • 9YEN C, LIN J C, LI W J, et al. An abductive neural network approach to the design of runner dimensions for the minimization of warpage in injection moulding[J]. Journal of Materials Processing Technology, 2006,174 ( 1/3): 22-28.
  • 10LIN J C. Optimum cooling system design of a free-form injee tion mold using an abductive network[J]. Journal of Materials Processing Technology, 2002,120(1/3) : 226-236.

二级参考文献4

  • 1[1]Coyle D J, et al. The kinematics of fountain flow in mold-filling.AIChE. 1987, 33:1168
  • 2[2]Hieber C A. Ch 1 in injection and compression molding foundamen-tals. Isayev A I, ed. New York: Marcel Dekker, 1987.
  • 3[3]Hieber C A, et al. A finite-element/finite-difference simulation of the injection-molding filling process. Journal of Non - Newtonian Fluid Mechanics,1980,7( 1 ): 1
  • 4[4]Goldberg D E. Gas in Search. 0ptimization and Machine Learning,Addison Wesley, 1989.

共引文献9

同被引文献34

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部