摘要
引入直角笛卡儿坐标幂变换的概念,说明一平面曲线是较经常地用4个或更少的象限方程的并集来表示的;这些象限方程是在曲线所在的各个象限中惟一定义的,因而是象限不变的.然后列出费马曲线的方程,并简述了费马曲线的一些几何性质.
The concept of exponential transformations of rectangular Cartesiancoordinates is introduced, showing that a plane curve is more frequently expressed by a unionof four or fewer quadrantal equations defined uniquely in the respective quadrants whichthe curve covers and are therefore quadrant invariant, then the Fermat curves with someof their geometric properties are formulated.
出处
《哈尔滨理工大学学报》
CAS
1998年第5期103-109,共7页
Journal of Harbin University of Science and Technology
关键词
幂变换
参照示尺
负化子
象限方程
费马曲线
exponential transformation
reference gauge
relative power ratio
negativator
quadrantal equation
Fermat curve