期刊文献+

一类支持向量机的设备状态自适应报警方法 被引量:8

Self-Adaptive Alarm Method for Equipment Condition Based on One-Class Support Vector Machine
下载PDF
导出
摘要 为了提高对异常状态识别的适应性和有效性,提出了一种基于一类支持向量机的设备状态自适应报警方法.该方法使用一类支持向量机的在线算法,动态估计监测参数在高维特征空间中的最优分布区域,将新数据与上一时刻分布区域的相对距离作为异常指标,描述监测参数的统计特征变化,辨识出设备的异常状态.通过对仿真数据的报警效果分析,以及将该方法应用于对加热炉风机的振动监测中,得到的异常报警结果能够满足实际监测的需要,证明该方法具有异常的识别敏感性、缓慢劣化包容性和状态迁移适应性的特点. To improve the adaptability and effectiveness of recognition on abnormal condition, a self-adaptive alarm method for equipment condition based on one-class support vector machine (OC-SVM) is proposed. The optimum distribution area of monitoring parameters in high-dimensional feature space is dynamically estimated with on-line algorithm of OC-SVM. The abnormal index, determined by the relative distance between the new data and the distribution area at the previous moment, describes the statistical feature variation of monitoring parameters and identifies the abnormal condition of the equipments. The characteristics, such as the sensitivity in abnormal condition recognition, the toleration in slow deterioration and the adaptability in condition alternation, are verified by simulation data. The present method is further applied to the vibration monitoring of heating furnace fan. The alarms under the actual abnormal condition meet the demand of equipment monitoring.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第11期61-65,共5页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2007AA04Z432) 机械制造系统工程国家重点实验室开放课题研究基金资助项目
关键词 一类支持向量机 自适应报警 异常状态 one-class support vector machine self-adaptive alarm abnormal condition
  • 相关文献

参考文献7

  • 1徐敏.设备故障诊断手册[M].西安:西安交通大学出版社,1998..
  • 2FRANK P M. Residual evaluation for fault diagnosis based on adaptive fuzzy thresholds [C]//IEE Colloquium on Qualitative and Quantitative Modeling Methods for Fault Diagnosis. London, UK: IEE Press, 1995: 1-11.
  • 3BERNHARD S, JOHN C P, JOHN S T, et al. Esti- mating the support of a high-dimensional distribution [J]. Neural Computation, 2001, 13(7): 1443-1471.
  • 4DELPJINE P, PHILIPPE V, EMMANUEL D, et al. An abrupt change detection algorithm for buried land mines localization [J]. IEEE Transactions on Geosci ence and Remote Sensing, 2006, 44(2):260-222.
  • 5胡桥,何正嘉,訾艳阳,张周锁.基于模糊支持矢量数据描述的早期故障智能监测诊断[J].机械工程学报,2005,41(12):145-150. 被引量:13
  • 6钟清流,蔡自兴.基于OCSVM-CPSO的自适应故障诊断[J].计算机工程与应用,2007,43(8):18-20. 被引量:1
  • 7GERT C, TOMASO P. Incremental and decremental support vector machine learning [M]. Cambridge, MA,UK: MIT Press, 2001: 409-415.

二级参考文献11

  • 1钟清流,蔡自兴.基于一类支持向量机的传感器故障诊断[J].计算机工程与应用,2006,42(19):1-3. 被引量:4
  • 2Tax D M J, Duin R P W. Support vector data description.Machine Learning, 2004, 54:45-66.
  • 3Tax D M J, Duin R P W. Support vector domain description. Pattem Recognition Letters, 1999, 20(11-13):1191-1199.
  • 4Vapnik V N. The nature of statistical learning theory. New York: Springer-Verlag, 1995.
  • 5.[EB/OL].http://www.eecs.cwru.edu/laboratory/bearing/,.
  • 6Lou X S, Loparo K A. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mechanical Systems and Signal Processing, 2004, 18: 1077- 1095.
  • 7Hyun Joon Shina,Dong-Hwan Eomb,Sung-Shick Kimb.One-class support vector machines-an application in machine fault detection and classification[J].Computers & Industrial Engineering,2005,48:395 -408.
  • 8Tax D,Duin,R.Data domain description by support vectors[M]//Verleysen M.Proc ESANN S.Brussels D:Facto Press,1999:251-256.
  • 9Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks,1995:1948.
  • 10Jiang Chuanwena,Etorre Bompardb.A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization[J].Mathematics and Computers in Simulation,2005,68:57-65.

共引文献87

同被引文献73

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部