期刊文献+

气泡堆积法生成曲线多边形区域非结构化网格及其应用 被引量:2

Bubble Packing Method Based Unstructured Grid Generation of Curved-Edge Polygon with Its Application
下载PDF
导出
摘要 对气泡堆积法进行改进,发展了一种基于气泡堆积法生成曲线多边形区域非结构化网格的算法,将曲线边界映射为直线完成气泡添加和位置动态调整,再通过弧长参数化的方法将气泡位置映射回曲线边界,避免了移动调整过程中气泡偏离曲线的问题.提出了一种简便的判断点在复杂曲线多边形区域内的方法,简单且易于编程.通过添加不同大小的顶点气泡以及在内部设置人工点源,利用加权平均法实现了网格的局部加密.应用基于非结构化同位网格的SIMPLE算法对环扇形空腔顶盖驱动流进行了数值模拟,不同雷诺数下的计算结果与文献结果吻合较好. An algorithm for bubble packing method based unstructured grid generation of a curved-edge polygon is developed to avoid bubble departure from a curved boundary during dynamic bubble movement. The curve boundary is mapped into a straight line to allow bubble adding and moving. Then the bubble position is mapped into the curve boundary by the arc-length parameterization method. Combined with conventional methods, a new method to judge a point in a given curved-edge polygon is proposed. Local grid refinement is realized by adding different size bubbles to the real and artificial vertices and setting the bubble's radius by the weighted average method. Moreover, the SIMPLE algorithm on unstructured collocated grid systems is developed and applied to simulate the lid-driven flow in a polar cavity. The numerical simulation results agree well with the experimental data under different Reynolds numbers.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第11期109-113,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基(50676079) 教育部新世纪优秀人才计划资助项目(NCET-07-0661) 教育部科学技术研究重点资助项目(107101)
关键词 气泡堆积法 非结构化网格 曲线多边形 数值模拟 bubble packing method unstructured grid curved-edge polygon numerical simulation
  • 相关文献

参考文献13

  • 1陶文铨.计算传热学的近代进展[M].北京:科学出版社,2005:114-118.
  • 2陈斌,郭烈锦.非结构化网格快速生成技术[J].西安交通大学学报,2000,34(1):18-21. 被引量:13
  • 3SHIMADA K, GOSSARD D C. Automatic triangular mesh generation of trimmed parametric surfaces for finite element analysis [J]. Computer Aided Geometric Design, 1998, 15: 199-222.
  • 4CINGOSKI V, MURAKAWA R, KANEDA K, et al. Automatic mesh generation in finite element analysis using dynamic bubble system[J]. Applied Physics, 1997, 81(8): 4085-4087.
  • 5SHIMADA K, YAMADA A, ITOH T. Anisotropic triangulation of parametric surfaces via close packing of ellipsoids [J]. International Journal of Computational Geometry and Applications, 2000, 10(4): 400-424.
  • 6CHUNG SW, KIM S J. A remeshing algorithm based on bubble packing method and its application to large deformation problems[J]. Finite Elements in Analysis and Design, 2003, 39: 301-324.
  • 7武利龙,陈斌.基于气泡堆积的非结构化网格生成技术[J].西安交通大学学报,2009,43(1):29-33. 被引量:6
  • 8武利龙,陈斌.气泡堆积法生成局部加密非结构化网格[J].西安交通大学学报,2009,43(9):19-22. 被引量:2
  • 9方逵,谭元发,吴泉源.近似弧长参数化的一种数值算法[J].工程数学学报,2002,19(3):123-127. 被引量:5
  • 10RUIZ DE MIRAS J, FEITO F R. Inclusion test for curved-edge polygons [J]. Computers & Graphics, 1997, 21(6): 815-824.

二级参考文献30

  • 1苏铭德 黄素逸.计算流化力学基础[M].北京:清华大学出版社,1997..
  • 2陶文铨.数据值传热学[M].西安:西安交通大学出版社,1986..
  • 3ITO Y, SHIH A M, ERUKALA A K, et al. Parallel unstructured mesh generation by an advancing front method [J]. Mathematics and Computers in Simulation, 2007, 75: 200-209.
  • 4SHIMADA K, GOSSARD D C. Bubble mesh: automated triangular meshing of non-manifold geometry by sphere packing[C] /// Proceedings of the Third Symposium on Solid Modeling and Applications. New York, USA:ACM Press,1995: 409-419.
  • 5SHIMADA K, GOSSARD D C. Automatic triangular mesh generation of trimmed parametric surfaces for finite element analysis [J]. Computer Aided Geometric Design, 1998, 15: 199-222.
  • 6CINGOSKI V, MURAKAWA R, KANEDA K, et al. Automatic mesh generation in finite element analysis using dynamic bubble system [J]. Applied Physics, 1997, 81(8) : 4085-4087.
  • 7DIBBEN D C. 3D mesh generation using bubble meshing for microwave applications [J]. IEEE Transactions on Magnetics, 2000, 36(4) : 1514-1518.
  • 8KIM J H, KIM H G, LEE B C, et al. Adaptive mesh generation by bubble packing method [J]. Structural Engineering and Mechanics, 2003, 15(1): 135-149.
  • 9MAITLAND G C, RIGBY M, SMITH E B, et al. Intermolecular forces: their origin and determination [M]. Oxford, UK: Clarendon Press, 1981.
  • 10SHIMADA K, GOSSARD D C. Bubble mesh: automated triangular meshing of non-manifold geometry by sphere packing[C]//Proceedings of the Third Symposium on Solid Modeling and Applications. New York, USA: ACM Press, 1995:409-419.

共引文献39

同被引文献12

  • 1关振群,单菊林,顾元宪.基于黎曼度量的复杂参数曲面有限元网格生成方法[J].计算机学报,2006,29(10):1823-1833. 被引量:20
  • 2Lee C K.Automatie metric 3D surface mesh generation using subdivision surface geomeaieal model[J].Int J Numer Mesh Engng, 2003,56.1593-1614.
  • 3Wang Z J.A quadlxee-based adaptive Cartesian/Quad grid flow solver for Navier-Stokes equation[J].Compute & Fluids, 1998,27 (4) : 529-549.
  • 4Lo S H,Wang W X.Generation of anisotropic mesh by ellipse packing over an unbounded domain[J].Engineering with Comput- ers, 2005,20: 372-383.
  • 5Borouchaki H,George P L,Hecht F,et al.Delaunay mesh genera- tion governed by metric specifcations, Part I algorithms[J].Finite Element Analysis and Design, 1997,25(1/2) :61-83.
  • 6Lee C K.On curvature element-size control in metric surface mesh generation[J].Int J Numer Mesh Engng, 2001,50: 787-807.
  • 7Kim J H, Kim H G.Adaptive mesh generation by bubble pack- ing method[J].Struetural Engineering and Mechanics,2003, 15 (1) : 135-149.
  • 8李九红,王雪,赵钦.无网格伽辽金法在裂纹扩展中的应用研究[J].西安理工大学学报,2008,24(4):476-479. 被引量:6
  • 9刘莹,聂玉峰.泡泡布点方法及其并行性[J].计算物理,2009,26(6):813-820. 被引量:8
  • 10梁义,陈建军,陈立岗,郑耀.几何自适应参数曲面网格生成[J].计算机辅助设计与图形学学报,2010,22(2):327-335. 被引量:18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部