摘要
证明了下列结果:(1)设G是3连通无爪图,|V(G)|≥6,且G的每个导出子图A都满足φ(a1,a2),那么对任意u,v∈V(G),若2≤d(u,v)≤5,则对满足d(u,v)≤k≤5的整数k,G中存在(u,v)-k路.(2)设G是3连通无爪图,|V(G)|≥6,且G的每个导出子图A都满足φ(a1,a2),而P=v1v2…v5(v1=u,v5=v)是G的(u,v)-4路,G[V(P)]=K|V(P)|,则G中存在(u,v)-5路.
This paper shows the following results: (1) Let G be a 3 connected claw free graph, and |V(G)|≥6. Suppose that each induced subgraph A of G satisfies φ(a 1,a 2). Then for each pair of vertices u,v∈V(G) with 2≤d(u,v)≤5, there exists a (u,v) k path in G for each integer k satisfying d(u,v)≤k≤5. (2) Let G be a 3 connected claw free graph, and |V(G)|≥6. Assume that each induced subgraph A of G satisfies φ(a 1,a 2). Suppose that P=v 1v 2…v 5(v 1=u,v 5=v) is a (u,v) 4 path in G, and G=K |V(P)| . Then there exists a (u,v) 5 path in G.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第3期263-268,共6页
Journal of Central China Normal University:Natural Sciences
关键词
导出子图
路
无爪图
存在性
induced subgraph
path
claw free graph