期刊文献+

基于混合遗传算法及最低误码率准则的几何特征均衡器 被引量:2

Geometric feature equalizers based on minimum bit error rate criterion and hybrid genetic algorithm
下载PDF
导出
摘要 针对高效调制通信系统中带内干扰抑制问题,提出一种基于最低误码率准则的非线性几何特征均衡器,并用径向基函数神经网络来实现。为优化非线性均衡器的参数训练,本文构造了一种新的遗传随机梯度混合算法。仿真表明:对于扩展的二元相移键控信号,在相对强的窄带干扰下,匹配滤波器及线性均衡器已失效,而基于最低误码率准则的几何特征均衡器仍能表现出良好的性能,也大大优于基于最小均方误差准则的非线性均衡器。 A nonlinear geometric feature equalizer based on minimum bit error rate is proposed for removing interference whose frequency band overlaps with the desired signal in high efficient modulation communications, and the equalizer is realized by radial basis function neural network. For optimizing the parameters of nonlinear equalizers, a novel hybrid genetic algorithm-stochastic gradient algorithm is also proposed in the paper. Simulation results show that when extended binary phase shifting keying signals are contaminated by the relatively strong narrow band interference, the performances of matched filters and linear equalizers are degenerate rapidly, but geometric feature equalizers based on minimum bit error rate provide very low bit error rate, and their performance is also much better than that of nonlinear equalizers based on minimum mean square error.
出处 《电路与系统学报》 CSCD 北大核心 2009年第5期49-53,59,共6页 Journal of Circuits and Systems
基金 国家自然科学基金(60872075) 国家863计划资助课题(2008AA01Z227)
关键词 通信信号处理 非线性滤波器 几何特征均衡器 混合遗传算法 communication signal processing nonlinear filters geometric feature equalizers hybrid genetic algorithm
  • 相关文献

参考文献13

  • 1吴乐南,等.高频带利用率的信息调制和解调方法[P].发明专利公开号:1494284,2004.
  • 2吴乐南.超窄带传输与缩频通信体制[J].电信快报,2004(2):16-18. 被引量:16
  • 3李小平,吴乐南.类正弦VMSK调制信号的正交性[J].电路与系统学报,2004,9(4):33-35. 被引量:12
  • 4朱仁祥 吴乐南.用于频谱混叠信号分离的几何特征滤波器[J].中国科学学报,2006,3(6):27-27.
  • 5Aaron M R, Tufts D W. Inter symbol interference and error probability [J]. IEEE Trans. Inform. Theory, 1966, 12: 26-34.
  • 6Yeh C C, Barry J R. Adaptive minimum bit-error rate equalization for binary signaling [J]. IEEE Trans. Commun., 2000, 48(7): 1226-1235.
  • 7Chen S, Mulgrew B, Hanzo L. Least bit error rate adaptive nonlinear equalizers for binary signaling [J]. Communications, lEE Proceedings, 2003, 150(1): 29-36.
  • 8Chen S. Adaptive minimum bit-error-rate filtering, Vision, Image and Signal Processing [J]. lEE Proceedings, 2004, 151 (1): 76-85.
  • 9Goldberg D E. Genetic algorithm in search, optimization and machine learning [M]. New York: Addison-Wesley, 1989.
  • 10Tang K S, Man K F, Kwong S, He Q. Genetic algorithms and their applications [J]. Signal Processing Magazine, IEEE, 1996, 13(6): 22-37.

二级参考文献5

  • 1Walker H R.VPSK and VMSK Modulation transmit digital audio and video at 15 bits/sec/Hz[J]IEEE Trans.Broadcasting,1997,3(1):96-103
  • 2Sea change communications. "Impossible" technology passes the test [R]. White paper, 2000-09, 28.
  • 3Sayhood K H, Lenan Wu. Raise bandwidth efficiency with sine-wave modulation VMSK [J]. Microwaves and RF Mag., (U.S.A.), 2001, 4: 79-84.
  • 4Li Xiaoping, Wu Lenan. Power spectrum analysis for sine-like VMSK signals [J]. Submitted to Microwaves and RF Mag., (U.S.A.)
  • 5Li Xiaoping, Wu lenan, Zhang Shikai. AWGN channel capacity for sine-like VMSK modulation [J]. Submitted to IEE Electronics Letters, (U.K.)

共引文献28

同被引文献24

  • 1Pupolin G. , Performance analysis of digital radio links with nonlinear transmit amplifiers [ J ]. IEEE J. Select. Areas Commun. , 1987, SAC -5 ( 4 ) : 534-546.
  • 2Chini A,. Wu Y,. Tanany M. E, Mahmoud S, Hardware Nonlinearities in Digital TV Broadcasting Using OFDM Modulation[J ]. IEEE Trans. Broadcasting, 1998,44 ( 1 ) : 12-21.
  • 3Seung Hee Han, Jae Hong Lee, An overview of peak-to- average power ratio reduction techniques for muhicarrier transmission [ J ]. IEEE Transactions on Wireless Commu- nications,2005,12(2) :56-65.
  • 4Zhou D, DeBrunner Novel adaptive nonlinear predistorters based on the direct learning algorithm [ J ]. IEEE Trans- actions on Signal Processing,2007,55 (1) :120-133.
  • 5Nocedal Jorge, Wright Stephen J. Numerical Optimization [ M ]. Springer Series in Operation Research, New York : Springer, 1999.
  • 6Schraudolph Nicol N ,Yu Jin, Gunter Simon. A stochastic quasi-Newton method for online eonvex optimization [ C ]. In: Proc. 11 th Intl. Conf. Artificial Intelligence and Sta-tisties, San Juan, Puerto Ric0,2007:433-440.
  • 7Morejon R A, Principe J C. Advanced search algorithms for information-theoretic learning with kernel-based esti- mators[J]. IEEE Trans. on Neural Networks,2004,15 (4) :874-884.
  • 8Schetzen M. The Voherra and Wiener theories of nonlinear systems[ M]. New York: John Wiley and Sons, 1980.
  • 9Eun C,. Powers E J,A new Voherra predistorter based on the indirect learning architecture [ J ]. IEEE Trans. on Signal Processing, 1997,45 ( 1 ) :223-227.
  • 10Kang H W, Cho Y S,Youn D H,On compensating nonlin- ear distortions of an OFDM system using an efficient adaptive predistorter [ J ]. IEEE Trans. Commun. , 1999, 47 (4) : 522-526.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部