期刊文献+

带有基数约束的指数跟踪问题及其粒子群算法求解 被引量:4

Particle swarm optimization approach to index tracking problem with a cardinality constraint
下载PDF
导出
摘要 随着指数衍生产品日益受到重视,指数化投资组合常被传统的消极基金管理者或机构所采用,而用有限的资金按指数构成比例进行投资显然是不现实的,所以指数的最优误差追踪就显得更加重要。将追踪误差定义为证券投资组合收益率与所追踪的指数基准收益率之差的均值平方和的平方根,建立了基数约束(即总资产数不超过某个特定整数K)下的跟踪误差最小化模型。由于引入显示的基数约束使得该模型是一个非线性混合整数规划问题,传统算法难以有效求解,为此设计了一个粒子群算法求解基数约束下的指数跟踪模型,实际算例表明,算法是有效的。 With the index derivative production are paid attention to day and day, index portfolio are often used by investor or financial setup, but it is not real that investors invest index according to the proportion of index fund-construction with limited fund in number. So the minimum tracking error of index is becoming increasingly important. The tracking error is defined as the standard deviations of the returns' differences (i. e. the root-mean-squared de- viation) between the portfolio and the benchmark of index, and portfolio optimization model of the minimum tracking error is established with cardinality constraints. This portfolio optimization model, with a restriction on the cardinality constraints, is a nonlinear and mixed integer programming problem, for which efficient algorithms do not exist. A particle swarm optimization (PSO) algorithm is proposed to solve the tracking error minimization problem. The numerical results show that PSO approach is successful in portfolio optimization.
作者 胡支军 张珣
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2009年第5期611-616,621,共7页 Journal of Natural Science of Heilongjiang University
基金 贵州省自然科学基金资助项目(20052002) 贵州大学引进人才科研启动项目(X065024) 贵州省省长优秀人才专项基金项目(2008(19))
关键词 跟踪误差 基数约束 指数跟踪 粒子群算法 tracking error cardinality constraints index tracking particle swarm optimization
  • 相关文献

参考文献16

  • 1ROLL R. A mean - variance analysis of tracking error[ J]. Journal of Portfolio Management, 1992, 18 (4) : 13 - 22.
  • 2ROHWEDER H C. Implementing stock selection ideas: Does tracking error optimization do any good? [ J ]. Journal of Portfolio Management, 1998, 24(3) :49 -59.
  • 3RUDOLF M, WOLTER H J, ZIMMERMANN H. A linear model for tracking error minimization [ J ]. Journal of Banking and Finance, 1999,23 ( 1 ) :85 - 103.
  • 4BEASLEY J E, MEADE N, CHANG T J. An evolutionary heuristic for the index tracking problem [ J]. European Journal of Operational Research, 2003, 148(3): 621 -643.
  • 5GILLI M, KELLEZI E. Threshold accepting for index tracking[ R]. Geneva: University of Geneva, 2001.
  • 6PRA P D, RUNGGALDIER W J, TOLOTTI M. Pathwise optimality for benchmark tracking[J]. Automatic Control, IEEE Transactions, 2004, 49 (3) :386 -395.
  • 7DAVID D Y, ZHANG S Z, ZHOU X Y. Tracking a financial Benchmark using a few assets[ J]. Operations Research, 2006, 54(2) :232 -246.
  • 8荣喜民,夏江山.基于CVaR约束的指数组合优化模型及实证分析[J].数理统计与管理,2007,26(4):621-628. 被引量:10
  • 9陈志平,王懿,徐宗本.基于下半矩风险度量与t分布的单向金融指数跟踪模型[J].应用数学学报,2008,31(1):24-34. 被引量:4
  • 10TABATA Y, TAKEDA E. Bicrlteria optimization problem of designing and index fund [ J ]. Journal of the Operational Research Society, 1995,46 (8) :1023 - 1032.

二级参考文献47

  • 1李宁,付国江,库少平,陈明俊.粒子群优化算法的发展与展望[J].武汉理工大学学报(信息与管理工程版),2005,27(2):26-29. 被引量:28
  • 2林丹,李小明,王萍.用遗传算法求解改进的投资组合模型[J].系统工程,2005,23(8):68-72. 被引量:13
  • 3Markowitz H M. Portfolio selection. Journal of Finance, 1952, 7(1): 77-91
  • 4Markowitz H M. Portfolio Selection: Efficient Diversification of Investment. New York: John Willey, 1959
  • 5Hogan W V, Warren J M. Computation of the efficient boundary in the E-S portfolio selection model. Journal of Financial and Quantitative Analysis, 1972, 7(4): 1881-1896
  • 6Bawa V S. Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 1975, 2(1): 95-121
  • 7Fishburn P C. Mean-risk analysis with risk associated with below-target returns. American Economics Review, 1977, 67(2): 116-126
  • 8Harlow W V, Rao K S. Asset pricing in a generalized mean-lower partial moment framework: theory and evidence. Journal of Financial and Quantitative Analysis, 1989, 24(3): 285-311
  • 9Grootveld H, Hallerbach W. Variance vs downside risk: Is there really that much difference? European Journal of Operational Research, 1999, 114(2): 304-319
  • 10Hodges S D. Problem in the application of portfolio selection model. Omega, 1976, 4(6): 600-709

共引文献30

同被引文献21

  • 1刘晓星.基于CVaR的投资组合优化模型研究[J].商业研究,2006(14):15-18. 被引量:5
  • 2张蕾,郑振龙.指数投资组合的VaR模型及检验[J].山西财经大学学报,2007,29(5):86-89. 被引量:4
  • 3荣喜民,夏江山.基于CVaR约束的指数组合优化模型及实证分析[J].数理统计与管理,2007,26(4):621-628. 被引量:10
  • 4Lian Yu, Shuzhong Zhang, Xun Yu Zhou. A Downside Risk Analysis Based on Financial Index Tracking Models[M].Stochastic Finance, 2006.
  • 5Diana Barro, Elio Canestrelli. Tracking Error: a Multistage Portfolio Modet[J].Annals of Operations Research, 2009,(1).
  • 6Philippe J.Value at Risk:the New Benchmark fo:r Controlling Market Risk[M].Chicago:Irwn Prefessional, 1996.
  • 7Rockafellar R T,Uryasev S. Optimization of Conditional Value- at-Risk[J].The Journal of Risk,2000.
  • 8Yi Wang,Zhiping Chen, Kecun Zhang.A Chance-constrained Portfolio Selection Problem Under T--distribution [J].Asia--Pacifie Journal of Operational Research,2007,24(4).
  • 9R.Stom,K.Price.Differential Evolutiona Simple and Efficient Adaptive Scheme for Globle Optimization over Continuous Spaees [R].Technical Report,International Computer Seience Institute, 1995, (8).
  • 10R.Stom,K.Price.Differential Evolution -a Simple and Efficient Adaptive Scheme for Globle Optimization over Continuous Spaces [J].Journal of Global Optimization, 1997,11 (4).

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部