期刊文献+

城市道路单行系统布局优化的双层规划模型和混合算法 被引量:12

Bilevel programming model and hybrid solution algorithm for the configuration of one-way streets
原文传递
导出
摘要 研究了基于出行者路径选择行为的单行道布局优化问题.借助于双层规划思想,以最小化研究区域内的总旅行时间为交通管理者的决策目标,建立了单行道布局优化的混合整数非线性规划模型,用0-1变量表征路段单行与否,用Logit型随机用户均衡网络模型刻画在交通管理者确定的某一单行道布局方案下的网络均衡流量模式.设计了GA-MSA组合式算法,其中遗传算法求解上层问题,MSA算法求解在上层给定的单行布局方案下的路段均衡流量模式.为使初始化和遗传操作得到的染色体可行,设计了相应的染色体修复程序.算例分析验证了用定量化方法优化单行道布局的必要性,参数敏感度分析解析了参数取值对优化结果的影响趋势和程度. One-way traffic is a cost-effective and efficient strategy in urban transportation management. This paper conducts the optimization of one-way street layout while taking into account drivers' route choice behaviors. A binary mixed integer nonlinear bilevel programming model, with the objective to minimize the total system travel time encountered by all users, is first formulated to depict this Stackelberg game. A logit-type stochastic user equilibrium model is adopted to describe drivers' route choice behaviors reacting to a given layout scheme. A hybrid GA-MSA solution algorithm is then presented to solve this proposed model. The Genetic Algorithm (GA) with a special chromosome repairing approach is to solve the proposed upper level sub-problem while Method of Successive Averages (MSA) is to obtain an optimal link flow pattern under a given one-way street layout scheme from GA. Finally, a numerical experiment is included to demonstrate the necessity of optimizing one-way street layout and the robustness of the proposed methodology, and the sensitivities of critical parameters in the proposed algorithm are also analyzed to depict the effects of parameter values on the optimal scheme and to obtain their empirical ranges.
作者 许项东 程琳
出处 《系统工程理论与实践》 EI CSCD 北大核心 2009年第10期180-187,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(50678037) 国家高技术研究发展计划(863)(2007AA11Z205)
关键词 交通工程 单行道 双层规划 随机用户均衡 遗传算法 traffic engineering one-way street bilevel programming stochastic user equilibrium genetic algorithm
  • 相关文献

参考文献11

  • 1杨佩昆.交通管理与控制[M].北京:人民交通出版社,2002.
  • 2Drezner Z, Wesolowsky G O. Selecting an optimum configuration of one-way and two-way routes[J]. Transportation Science, 1997, 31(4): 386-394.
  • 3Yang H, Bell M G H. Transport bilevel programming problems: Recent methodological advances[J]. Transportation Research, 2001, 35B: 1-4.
  • 4Leblanc L J. An algorithm for the discrete network design problem[J]. Transportation Science, 1975, 9(3): 185- 199.
  • 5Cruz F R B, Smith J M, Mateus G R. Algorithms for a multi-level network optimization problem[J]. European Journal of Operational Research, 1999, 118: 164-180.
  • 6高自友,张好智,孙会君.城市交通网络设计问题中双层规划模型、方法及应用[J].交通运输系统工程与信息,2004,4(1):35-44. 被引量:84
  • 7Gao Z Y, Wu J J, Sun H J. Solution algorithm for the bi-level discrete network design problem[J]. Transportation Research, 2005, 39B: 479-495.
  • 8Cantarella G E, Pavone G, Vitetta A. Heuristics for urban road network design: Lane layout and signal settings[J]. European Journal of Operational Research, 2006, 175: 1682-1685.
  • 9Chipperfield A, Fleming P, Pohlheim H, et al. User's guide: Genetic algorithm toolbox for use with matlab[R]. England: Department of Automatic Control and Systems Engineering, University of Sheffield, 1994.
  • 10Sheffi Y. Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods[M]. Englewood Cliffs: Prentice-Hall Inc, 1985.

二级参考文献5

共引文献89

同被引文献137

引证文献12

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部