期刊文献+

基于自适应直觉模糊推理的入侵检测系统设计与实现

Design and Realization for IDS Based on Adaptive Intuitionistic Fuzzy Reasoning
下载PDF
导出
摘要 通过对入侵检测技术和自适应神经-直觉模糊推理系统的研究,设计并实现了基于自适应直觉模糊推理的入侵检测系统.首先,详细阐述了系统的总体框架设计及各模块的设计.其次,选用KDDCUP99数据集作为入侵检测数据集,对设计的入侵检测系统进行实现,并详细叙述了具体的检测步骤.最后,通过获得的检测结果验证了系统的可行性. Through studying the intrusion detection technology and Adaptive Neuro-lntuitionistic Fuzzy Inference System, the intrusion detection system based on Adaptive Neuro-Intuitionistic Fuzzy Inference System (ANIFIS) is designed and realized. First, the main framework design of the system and every module's design are introduced. Then, the intrusion detection system is realized which use KDD CUP 99 dataset as intrusion detection dataset and the step of detection is also introduced. Finally, the validity of the system is verified by the result of detection.
出处 《微电子学与计算机》 CSCD 北大核心 2009年第11期51-54,58,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(60773209) 陕西省自然科学基金资助项目(2006F18)
关键词 入侵检测 自适应 直觉模糊推理 KDD CUP 99数据集 intrusion detection adaptive intuitionistic fuzzy reasoning KDD CUP 99 dataset
  • 相关文献

参考文献6

二级参考文献19

  • 1Lee W, StolfoSJ. Data mining approaches for intrusion detection [A]. In: Proceedings, Seventh USENIX Security Symposium, San Antonio, TX, 1998
  • 2Jha S,Tan K, Maxion R. Markov chains, classifiers and intrusion detection [A]. In: The 14th IEEE Computer Security Foundations Workshop, Canada, 2001. Proceedings, Seventh USENIX Security Symposium, San Antonio,TX, 1998
  • 3Balajinath B, Raghavan S. Intrusion detection through learning behavior model [J]. Computer Communications, 2001, 24 (12):1202-1212
  • 4Forrest S, Hofmeyr S A. Computer Immunology [J]. Communications of the ACM,1997,40(10): 88-96
  • 5Vapnik V N. The nature of statistical learning theory [M]. New York: Springer, 1995
  • 6Kim D S,Park J S. Network-based intrusion detection with support vector machines [A]. In: KahngH-K. Ed. ICOIN 2003,LNCS 2662,2003.,747-756
  • 7Sohn T,Seo J T, Moon J S. A study on the covert channel detection of TCP/IP header using support vector machines [A]. In:Qing S, Gollmann D, Zhou J. Eds. ICOIN 2003, LNCS 2836,2003. 313-324
  • 8Hu W J,Liao Y H,Vemuri V R. Robust anomaly detection using support vector machines [J]. IEEE Transaetrions on Pattern Analysis and Machine Intelligence. (in press)
  • 9Scholkopf B,Smola A,Williamson R C,et al. New support vector algorithms. Neural Computation[J]. 2000,12(5): 1207-1245
  • 10Lee W, Stolfo S. A framework for constructing features and models for intrusion detection systems [J]. ACM Transactions on Information and System Security,2000(3) :227-261

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部