期刊文献+

认知无线电中OFDM多用户频谱分配 被引量:1

Multi-user OFDM spectrum allocation for cognitive radio
下载PDF
导出
摘要 针对认知无线电需要提高频谱利用率,限制功率以及保障QoS的要求,结合OFDM技术,研究了认知无线电场景中的多用户频谱分配,并给出了2种算法.其中,最优算法通过授权用户的SIR下限得到认知无线电的发射总功率,并采用拉格朗日定理为每个认知用户分配子载波和功率;次优算法引入"分配比例因子"来体现用户分配中的公平原则,并通过限制SIR得到频谱分配结果.仿真表明,最优、次优算法的性能好于基于FDMA的静态频谱分配算法,最优算法相对于FDMA能够有35%的容量提升;次优算法容量略有减小,但充分保障了用户的QoS需求.2种算法从不同层面满足了认知无线电的需求. Cognitive Radio (CR) is intended to improve spectrum utilization, reduce power needs and guarantee quality of service (QoS). Two algorithms using orthogonal frequency division multiplexing (OFDM) were proposed after reviewing research on spectrum allocation in multi-user CR. The ' optimal' algorithm obtains the total transmission power through the lower limit of primary users' signal to interference ratio (SIR) , and allots every user sub- carriers and power according to Lagrange's theorem. The ‘hypo-optimal' algorithm uses a prorating gene to deter mine equity of allocation. Results are obtained through restricting the users'SIR. Simulations showed both algorithms are effective, with the ‘optimal algorithm' providing about a 35% improvement in channel capacity when compared with frequency division multiple access (FDMA) allocation. The capacity of the ‘hypo-optimal' algorithm decreased slightly, but the QoS of users was guaranteed. Both algorithms satisfy the needs of CR, while using different approaches.
作者 刘鑫 谭学治
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2009年第10期1165-1169,共5页 Journal of Harbin Engineering University
基金 "973计划"基金资助项目(2007CB310601)
关键词 认知无线电 OFDM 频谱分配 比例公平 cognitive radio OFDM spectrum allocation proportion equity
  • 相关文献

参考文献8

  • 1CABRIC D, MISHRA S M, BRODERSEN R W. Implementation issues in spectrum sensing for cognitive radios [C ]//The 38th Asilomar Conference on Signals Systems and Computers. [ s. l. ], 2004.
  • 2MITOLA J. Cognitive radio: making software radios more personal [ J ]. IEEE Personal Communication, 1999, 6 (4) : 13-18.
  • 3HAYKIN S. Cognitive radio: brain empowered wireless communications [ J ]. IEEE Journal on Selected Areas in Communications, 2005, 23 (2) : 201-220.
  • 4SHI H, KATAYAMA M, YAMAZATO T, OKADA H, OGAWA A. An adaptive antenna selection scheme for transmit diversity in OFDM systems[ C ]//Proc IEEE VTC. [ s. l], 2001.
  • 5KOLODZY P J. Interference temperature: a metric for dynamic spectrum utilization [ J ]. International Journal of Network Management,2006, 16 ( 2 ) : 103-113.
  • 6JANG J, LEE K B. Transmit power adaptation for multiuser OFDM system[ J]. IEEE Journal on Selected Areas in Communications, 2003,21 (2) : 171-178.
  • 7CHANG R W. Synthesis of band-limited orthogonal signals for multichannel data transmission[ J]. Bell System Technical Journal, 1966,45 ( 12 ) : 1775-1796.
  • 8CHAKRAVARTHY V, NUNEZ A S, STEPHENS J P, SHOW A K, TEMPLE M A. TDCS, OFDM, and MC-CDMA: a brief tutorial[ J]. IEEE Communications Magazine, 2005,43(9) : 11-16.

同被引文献15

  • 1Liu Zhe, Geng Xiaoyan, Dong Mo. Two Dimension Spectrum Allocation for Cognitive Radio Networks, Wireless Communications [ J ]. IEEE Transactions on Wireless Communications ,2014,13 ( 3 ) : 1410-1423.
  • 2Tragos E Z, Zeadally S, Fragkiadakis A G, et al. Spectrum Assignment in Cognitive Radio Networks: A Comprehensive Survey [ J ]. IEEE Communications Surveys & Tutorials, 2013,15 ( 3 ) : 1108-1135.
  • 3Haykin S. Cognitive Radio: Brain-empowered Wireless Communications [J]. IEEE Journal on Selected Areas in Communications, 2005,23 ( 2 ) : 201-220.
  • 4Zhao Zhijin, Peng Zhen, Zheng Shilian, et al. Cognitive Radio Spectrum Allocation Using Evolutionary Algori- thms[J]. IEEE Transactions on Wireless Communi- cations ,2009, 8 (9) :4421-4425.
  • 5Peng Chunyi, Zheng Haitao, Zhao Ben. Utilization and Fairness in Spectrum Assignment for Opportunistic Spec-trum Access [ J ]. ACM Mobile Networks and Appli- cations. 2006.11 ( 4 ) : 555-576.
  • 6Kolodzy P J. Interference Temperature: A Metric for Dynamic Spectrum Utilization [ J ]. International Journal of Network Management ,2006,16 ( 2 ) : 103-113.
  • 7Wang Beiwei,Wu Yongle,Liu K J R. Game Theory for Cognitive Radio Networks : An Overview [ J ]. Computer Networks ,2010,54 ( 14 ) : 2537-2561.
  • 8Amiri B,Fathian M, Maroosi A. Application of Shuffled Frog-leaping Algorithm on Clustering [ J ]. International Journal of Advanced Manufacturing Technology, 2009, 42 ( 1/2 ) : 199-209.
  • 9Gao Hongyuan,Liu Yuqi, Diao Ming. Robust Multi-user Detection Based on Quantum Bee Colony Optimi- zation [ J ]. International Journal of Innovative Computing and Applications ,2011,3 ( 3 ) : 160-168.
  • 10Eusuff M, Lansey K, Pasha F. Shuffled Frog-leaping Algori-thm: A Memetic Meta-heuristic for Discrete Optimization [ J ]. Engineering Optimization, 2006,38 ( 6 ) : 129-154.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部