期刊文献+

体上一类具有幂等子块的分块矩阵的群逆

Group inverse of a class of block matrices with idempotent sub-blocks over skew fields
下载PDF
导出
摘要 设K是一个体,Km×n表示m×n上所有K矩阵的集合.对矩阵A∈K若存在矩阵X∈Kn×n使AXA=A,XAX=X,AX=XA,则称X为A的群逆.研究分块矩阵广义逆的表达式是矩阵广义逆理论中研究的重要问题.分块矩阵的群逆表达式在奇异微分和差分方程、马尔可夫链、迭代方法和密码学等领域有广泛应用.这里给出了体上分块矩阵[A B/B0](A,B∈Kn×n,B2=B,((I-B)A)#存在)的群逆的存在性及表示形式. Suppose K is a skew field and K is the set of all the n x n matrices over K. For A ∈K^m×n if there exists a matrix X∈K^m×n satisfying the matrix equations AXA =A ,XAX =X,AX =XA, then we call X the group inverse of A. Research on representations of the generalized inverses is an important problem in the theory of generalized inverses of matrices. The group inverse of block matrices has important applications in singular differential and difference equations, Markov chains, iterative methods, cryptography and so on. The existence and the representa- ~ 2 tion of the block matrix (A,B ∈K^m×n ,B^2 = B, ( (I - B) A) wexists) are given in this paper.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2009年第10期1185-1187,共3页 Journal of Harbin Engineering University
基金 黑龙江省自然科学基金资助项目(159110120002)
关键词 分块矩阵 幂等矩阵 群逆 skew field block matrix idempotent matrix group inverse
  • 相关文献

参考文献10

  • 1BHASKARA K P S. The theory of generalized inverses over commutative rings [ M ]. London :Taylar and Francis, 2002 : 144-148.
  • 2HEING G. The group inverse of the transformation φ (x) = AX - BX [ J]. Linear Algebra Appl, 1997, 257 : 321-342.
  • 3WANG Guorong, WEI Yimin, QIAO Sanzheng. Generalized inverses: theory and computations [ M ]. Beijing: Science Press, 2004: 50-58.
  • 4CAMPBELL S L. The Drazin inverse and systems of second order linear differential educations [ J ]. Linear and Multilinear Algebra, 1983,14(2) : 195-198.
  • 5WEI Yimin, DIAO Huaian. On group inverse of singular Toeplitz matrices [ J ].Linear Algebra Appl, 2005, 399: 109-123.
  • 6STEPHEN J K , MICHAEL N . On group inverses of Mmatrices with uniform diagonal entries [ J ]. Linear Algebra Appl, 1999, 296 : 153-170.
  • 7卜长江,赵杰梅,姚红梅.某些分块矩阵的Drazin逆[J].哈尔滨工程大学学报,2008,29(7):745-748. 被引量:12
  • 8CAO Chongguang, TANG Xiaomin. Representations of the group inverse of some 2 × 2 block matrices[ J]. International Mathematical Forum, 2006, 31 ( 1 ) : 1511 - 1517.
  • 9GONZALEZ N C , DOPAZO E. Representations of the Drazin inverse of a class of block matrices [ J]. Linear Algebra Appl, 2005, 400:253-269.
  • 10BU Changjiang, ZHAO Jiemei, ZHENG Jinshan. Group inverse for a class 2 × 2 block matrices over skew fields [J]. Appl Math Comput, 2008, 241 ( 1 ) :45-49.

二级参考文献12

  • 1卜长江.关于体上分块矩阵的群逆[J].数学杂志,2006,26(1):49-52. 被引量:4
  • 2卜长江,王贵艳,井世丽.主理想整环上保对称矩阵群逆的线性算子[J].哈尔滨工程大学学报,2007,28(8):942-946. 被引量:1
  • 3庄瓦金.任意体上矩阵对合函数与广义逆.东北数学,1987,1:57-65.
  • 4GOLUB G H, GREIF C. On solving block-structured indefinite linear systems [ J]. SIAM J Sci Comput, 2003, 24: 2076 -2092.
  • 5IPSEN I C F. A note on preconditioning nonsymmetric matrice [J]. SIAM J Sci Comput, 2001,23: 1050-1051.
  • 6CAMPELL S L, MEYER C D. Generalized inverses of linear transformations [M]. New York: Dover, 1991.
  • 7WANG Guorong, WEI Yimin. Generalized inverse theory and computation [ M]. Beijing/: Science Press, 2004.
  • 8WEI Yimin. Expressions for the Drazin inverse of 2 × 2 block matrix [ J]. Linear and Multilinear Algebra, 1998, 45 : 131-146.
  • 9CASTRO-GONZALEZ N, DOPAZO E. Representation of the Drazin inverse for a class of block matrices [J]. Linear Algebra Appl, 2005,400: 253-269.
  • 10LI Xiezhang, WEI Yimin. A note on the representations for the Drazin inverse of 2 × 2 block matrices[ J]. Linear Algebra Appl,2007,423 : 332-338.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部