期刊文献+

均值无限的随机游动上确界的尾渐近性和局部渐近性

Tail Asymptotics and Local Asymptotics for the Supremum of a Random Walk with an Infinite Mean
下载PDF
导出
摘要 对于增量具有无限均值及长尾分布的随机游动,Denisov D.等给出了其上确界的尾渐近性的一个充分条件.本文将增量的长尾分布的范围扩大到一个更大的分布族,它真包含了长尾分布族和控制变化尾分布族等.同时,证明了上述的充分条件也是必要的.为此,研究了这个更大分布族的性质,给出了积分加权分布是长尾或次指数的一些充分条件.相应地,还得到了增量具有无限均值的随机游动上确界的局部渐近性的一个等价条件. Denisov D. et al. delivered a sufficient condition on tail asymptotics of the supremum of a random walk with a common infinite mean and a long-tailed distribution of the summands. This paper cancels the restriction on the long-tail property of the distribution of the summands, thus enlarges the scope of distributions to a wider class, which includes properly long-tailed distribution class and dominatedly varying distribution class etc. Meanwhile, it is proved that the above sufficient condition is also necessary. In doing so, the authors investigate the properties of this wider class and provide some sufficient conditions on the integrated weighted distribution of the summands to be long-tailed or subexponential. Correspondingly, the authors also give an equivalent condition on local asymptotics of the supremum of a random walk with an infinite mean of the summands.
出处 《数学年刊(A辑)》 CSCD 北大核心 2009年第5期705-716,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10671139) 江苏省高校自然科学基础研究基金(No.08KJD110005) 数学天元青年基金(No.10826043)资助的项目
关键词 随机游动 无限均值 上确界 尾渐近性 局部渐近性 Random walk, Infinite mean, Supremum, Tail asymptotics, Localasymptotics
  • 相关文献

参考文献11

  • 1Denisov D., Foss S. and Korshunov D., Tail asymptotics for the supremum of a random walk when the mean is not finite [J], Queueing Systems, 2004, 46:15-33.
  • 2Embrechts P., Kliippelberg C. and Mikosch T., Modelling Extremal Events for Insur- ance and Finance [M], Berlin: Springer-Verlag, 1997.
  • 3Asmussen S., Apllied Probability and Queues [M], 2nd Ed., New York: Springer-Verlag, 2003.
  • 4Asmussen S., Foss S. and Korshunov D., Asymptotics for sums of random variables with local subexponential behavior [J], J. Theoret. Prob, 2003, 16:489-518.
  • 5Wang Yuebao, Yang Yang, Wang Kaiyong and Cheng Dongya, Some new equivalent conditions on asymptotics and local asymptotics for random sums and their applications [J], Insurance Math. Econom., 2007, 40:256-266.
  • 6Kliippelberg C., Subexponential distributions and integrated tails [J], J. Appl. Probab., 1988, 1:132-141.
  • 7Korshunov D., On distribution tail of the maximum of a random walk [J], Stochastic Processes and Their Applicatios, 1997, 72:97-103.
  • 8Asmussen S., Kalashnikov V., Konstantinides D., et al., A local limit theorem for random walk maxima with heavy tails [J], Statistics and Probability Letters, 2002, 56:399- 404.
  • 9Wang Yuebao, Cheng Dongya and Wang Kaiyong, The closure of local subexponential distribution class under convolution roots with applications to the compound Poisson process [J], J. Appl. Probab., 2005, 42:1194-1203.
  • 10Erickson K. B., Strong renewal theorems with infinite mean [J], Transactions of the American Mathematical Society, 1970, 151:263-291.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部