期刊文献+

基于流量预测的高速公路收费员动态配置模型 被引量:1

Dynamic Equilibrium Model of Expressway Toll Collector Based on Traffic Flow Prediction
下载PDF
导出
摘要 基于神经网络对不完全信息具有良好的适应性和遗传算法具有较强的全局搜索能力的优良特性,将遗传算法和神经网络有机结合起来对高速公路短期流量进行预测.采用精英选择、按比例适应度分配和基于排序的适应度分配相结合的选择方法,以及自适应的交叉、变异概率改进遗传算法,通过使用自适应学习速率来改进BP算法,并提出使用新的结合方式获取新一代种群,提高获取全局最优解的搜索速度,构建符合高速公路短期流量特点的预测模型.同时,采用排队论模拟高速公路收费过程,构建高速公路收费站的排队模型.结合短期流量预测模型及收费站排队模型,根据车道与收费员的配备,预测短期各时段的收费员需求,从而实现收费员的动态最优配置.最后结合实例,证明了模型的有效性. Based on the excellent characteristics of neural network such as favorable adaptability to incom- plete information and of genetic algorithm with relatively strong and comprehensive search ability, these two objectives are combined to predict the short-term traffic flow of expressway. In this paper, the methods of elite' s choices, fitness assignment by proportion and by sort are combined, as well as self-adaptive crossing and mutation probability are used to improve genetic algorithm. To enhance the comprehensive optimal search speed and develop the prediction model for expressway short-term traffic flow, self-adaptive learning rates are introduced to improve BP algorithm and new combing methods are presented to get new species. Meanwhile, queuing theory is adopted to simulate toll process of expressways, and then queuing model of ex- pressways' toll stations is formulated. By combining short-term traffic flow prediction model and toll station queuing model, the demands of toll collectors are predicted according to the allocation of lanes and toll col- lectors, which realizes the dynamic optimal equilibrium of toll collectors. The validity of the model is finally testified by field tests.
作者 张欢 史峰
出处 《交通运输系统工程与信息》 EI CSCD 2009年第5期71-76,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 中南大学博士研究生学位论文创新选题项目(77204)
关键词 遗传神经网络 排队模型 短期流量 收费员 动态配置 genetic neural network queuing model short-term traffic flow toll collector dynamic equilibrium
  • 相关文献

参考文献5

二级参考文献26

  • 1邹志康,吉保民,姜树强,刘巽明.医院船手术台合理配置研究[J].中华航海医学与高气压医学杂志,2004,11(4):230-232. 被引量:13
  • 2焦李成.神经网络的应用与实现[M].西安电子科技大学出版社,1995..
  • 3边肇祺.模式识别[M].清华大学出版社,1999..
  • 4[1]Ben-Akiva M,Koutsopoulos H N,Mukundan A.A dynamic traffic model system for ATMS/ATIS operations[J].IVHS Journal,1994,2(1):1-19.
  • 5[2]Cheslow M,Hatcher S G,Patel V M.An initial evaluation of alternative intelligent vehicle highway systems architecture[R].MITRE Report 92w0000063,MITRE Corporation, 1992.
  • 6[3]Davis G A,Nihan N L.Nonparametric regression and short term freeway traffic forecasting[J].Journal of Transportation Engineering,1991,117(2):178-188.
  • 7[4]Box G E P,Jenkins G M.Time series analysis:forecasting and control[R].San Francisco:Holden-Day,1977.
  • 8[5]Kalman R E.A new approach to linear filtering and prediction problems[J].Journal of Basic Engineering,1960,82(1):35-45.
  • 9[6]Okutani I,Stephanedes Y J.Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research,Part B,1984,18(1):1-11.
  • 10[7]Altman N S.An introduction to kernel and nearest-neighbor nonparametric regression[J].The American Statistician,1992,46(3):175-185.

共引文献74

同被引文献7

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部