摘要
一、问题的提出在森林资源数据实行计算机管理以后,小班资源数据的更新和预测工作已变得越来越重要。对于有直接经营活动的小班,资源数据的改变可以由键盘输入等方式来解决,但对于大量的没有直接经营活动的小班的数据更新,采用全面清查的办法显然是不可能的,这只有借助于模型处理加以解决。模型的好坏,也即模型对数据的适合程度,将直接影响更新数据的准确性。已经使用的生长量模型有很多,如理查德、龚帕茨、逻辑斯蒂生长量模型,等等。
In this paper, a new comprehensive growth model derived from growth accelaration in the light of a concise biological principle was presented. The new model not only indicates the named Richards, Gompertz and logistics growth models as its special cases, but also includes many other growth models such as linear, quadratic and exponential ones. By simple variance analysis, the observed data can be used direcly in deciding the model which is most appropriate through the new model with statistically stale parameters. It, therefore, has a practical and applicable value.
出处
《林业科学》
EI
CAS
CSCD
北大核心
1990年第2期182-188,共7页
Scientia Silvae Sinicae
关键词
生长量模型
参数稳定性
生长加速度
Comprehensive growth model
Growth accelaration
Parameter stability
Non-linear parameter estimation