期刊文献+

连续混沌系统的全状态混合投影同步 被引量:2

Full State Hybrid Projective Synchronization in Continuous-time Chaotic Systems
下载PDF
导出
摘要 介绍了全状态混合投影同步,并给出其定义。基于混沌同步误差系统反馈线性化思想设计同步控制器,以Lorenz系统、超混沌Chen系统为例,同时采用Matlab进行数值仿真,实现了连续混沌系统全状态混合投影同步。数值模拟证明了该方法的有效性和可行性。 A novel type of chaos synchronization, full state hybrid projective synchronization (FSHPS), was introduced and defined. Based on chaos synchronous error system feedback linearization controller design, general FSHPS scheme was given and illustrated by numerical simulation using Matlab soft, with Lorenz chaotic system and hyperchaotic Chen system as examples. Theoretical calculations and computer simulation results show the effectiveness of the method.
出处 《太原理工大学学报》 CAS 北大核心 2009年第6期651-656,共6页 Journal of Taiyuan University of Technology
基金 河北省自然科学基金(A2006000128)
关键词 LORENZ系统 超混沌Chen系统 反馈线性化 全状态混合投影同步 Lorenz chaotic system hyperchaotic Chen system feedback linearization full state hybrid projective synchronization
  • 相关文献

参考文献9

  • 1Pecora L M, Carroll T L. Synchronization in chaotic systems[J].Phys Rev Lett, 1990,64:821-824.
  • 2张若洵,田钢,杨世平.Chen混沌系统的自适应控制和同步电路实验[J].河北师范大学学报(自然科学版),2007,31(6):738-743. 被引量:9
  • 3陈志盛,孙克辉,张泰山.Liu混沌系统的非线性反馈同步控制[J].物理学报,2005,54(6):2580-2583. 被引量:77
  • 4刘鹏,常虹,刘德,陈彦军,史严,杨世平.离散混沌系统的参量自适应同步[J].河北师范大学学报(自然科学版),2005,29(1):47-51. 被引量:2
  • 5杨世平,牛海燕,田钢,袁国勇,张闪.用驱动参量法实现混沌系统的同步[J].物理学报,2001,50(4):619-623. 被引量:33
  • 6Jiang G P, Tang W, Chen G R, A simple global synchronization criterion for coupled chaotic systems[J].Chaos, Solitons Fractals, 2003, 15; 925-935.
  • 7Mainieri R,Rehacek J. Projective synchronization in three--dimensional chaotic systems[J].Phys Rev Lett, 1999,82(15): 3042-3045.
  • 8Hu Man feng, Xu Zhen-yuan, Zhang Rong. Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13 (2) : 456-464.
  • 9陈启宗.线性系统理论与设计[M].北京:科学出版社,1980:140-141.

二级参考文献21

  • 1PECORA L M,CARROLL T L.Synchronization in chaotic systems [J].Phys Rev Lett,1990,64:821-824.
  • 2KOCAREV L,PARLITZ U.General spproach ofr chaotic synchronization with applications to communication [J].Phys Rev Lett,1995,74:5028-5031.
  • 3PYRAGAS K.Predictable chaos in slightly perturbed unpredictable chaotic systems [J].Phys Lett (A),1993,181:203-210.
  • 4JOHN J K,AMRITKAR R E.Synchronization of unstable orbits using adaptive control [J].Phys Rev (E),1984,49:4843-4848.
  • 5LAI Y C,GREBOGI C.Synchronization of chaotic trajectories using control [J].Phys Rev (E),1993,47:2357-2360.
  • 6MARITAN A,BANAVAR J R.Chaos,noise and synchronization [J].Phys Rev Lett,1994,72:1451-1454.
  • 7LIU F.Synchronization for a class of chaotic systems based upon observer theory [J].Chin Phys,2001,10:606-610.
  • 8VASSILIADIS D.Parametric adaptive control and parameter identification of low-dimensional chaotic systems [J].Physica D,1994,71:319-341.
  • 9OTT E, GREBOGI C, YORKE J A. Controlling Chaos [ J ]. Phys Rev Lett, 1990,64 ( 11 ) : 1 196-1 199.
  • 10CHEN G,UETA T Y. Another Chaotic Attractor [J]. Int J Bifurcation and Chaos, 1999,9:1 465-1 946.

共引文献113

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部