期刊文献+

一类非线性微分代数系统的能控性子分布 被引量:1

Controllability distributions of a class of nonlinear differential-algebraic systems
下载PDF
导出
摘要 能控性子分布在系统的能控性分解中起着重要作用.针对一类非线性微分代数系统,利用M导数方法,提出了能控性子分布的概念.给出了一个计算包含在某些分布内的最大能控性子分布的算法,同时讨论了该算法的一些性质.最后,给出一个例子说明如何利用本文给出的算法计算此类微分代数系统的包含在某给定分布内的最大能控性子分布. The controllability distributions play an important role in controllability decompositions of the systems. By means of M-derivative methods, the concept of controllability distributions is introduced for a class of nonlinear differential-algebraic systems. An algorithm for calculating the maximal controllability distributions contained in some distributions is developed, and some properties on this algorithm are discussed. Finally, an example of calculating the maximal controllability distributions contained in some distributions is provided to illustrate the results.
作者 王文涛 李媛
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第10期1126-1129,共4页 Control Theory & Applications
基金 辽宁省教育基金资助项目(20060621)
关键词 微分代数系统 M导数 能控性子分布 算法 differential-algebraic systems M-derivative controllability distributions algorithm
  • 相关文献

参考文献10

  • 1ISIDORI A. Nonlinear Control Systems[M]. Third Edition. Berlin, Germany: Springer-Verlag, 1995.
  • 2LUENBERGER D G. Dynamics equations in descriptor form[J]. IEEE Transactions on Automatic Control, 1977, 22(3): 312 - 321.
  • 3YOU L S, CHEN B S. Tracking control designs for both holonomic and non-holonomic contrained hanical systems[J]. International Journal of Control, 1993, 58(4): 587 - 612.
  • 4KRISHNAN H, MCCLAMROCH N H. Tracking in nonlinear differential-algebraic systems with applications to constrained robot systems[J]. Automatica, 1994, 30(12): 1885 - 1897.
  • 5LIU X P. Local disturbance decoupling of nonlinear singular systems[J]. International Journal of Control, 1998, 70(5): 685 - 702.
  • 6LIU X E Asymptotic output tracking of nonlinear differential- algebraic systems[J]. Automatica, 1998, 34(3): 393- 397.
  • 7王文涛.仿射非线性奇异系统的受控分布[J].控制理论与应用,2007,24(6):929-932. 被引量:1
  • 8HILL D J, MAREELS I M Y. Stability theory for differential/algebraic systems with application to power systems[J]. IEEE Transactions on Control Automatic and Systems, 1990, 37(11): 1416 - 1423.
  • 9王杰,陈陈.电力系统中微分代数模型的非线性控制[J].中国电机工程学报,2001,21(8):15-18. 被引量:53
  • 10徐光虎,王杰,陈陈,曹国云.基于微分代数模型的AC/DC系统非线性控制器设计[J].中国电机工程学报,2005,25(7):52-57. 被引量:33

二级参考文献23

  • 1黄莹,徐政.基于同步相量测量单元的直流附加控制器研究[J].中国电机工程学报,2004,24(9):7-12. 被引量:63
  • 2王文涛,刘晓平,赵军.非线性奇异系统的能控性子分布[J].自动化学报,2004,30(5):716-722. 被引量:2
  • 3王文涛,刘晓平,赵军.非线性奇异系统的受控不变分布及其不变性[J].自动化学报,2004,30(6):911-919. 被引量:5
  • 4Young-Moon park Kwang-HoLee Myeon-SongChoi Seung-Ho Hyun Rim-TaigLee(Department of Electrical Engnieering, Seoul National UniversitySeoul 151-742, Korea).对电力系统稳定控制方法的比较研究[J].电网技术,1995,19(9):8-14. 被引量:2
  • 5Kundur P. Power system stability and control[M]. New York:McGraw-Hill, 1994.
  • 6Smed T, Anderson G. Utilising HVDC to damping power oscillations[J]. IEEE Trans. on Power Systems, 1993, 8(2): 620-626.
  • 7Hsu Yuan Yih, Li Wang. Damping of a parallel AC-DC power system using PID power system stabilizers and rectifier current regulators[J].IEEE Trans on Energy Conversion, 1988, 3(3): 540-547.
  • 8Wu CJ, Hsu YY. Design of self-tuning PID power system stabilizer for multimachine power systems[J]. IEEE Trans. on Power Systems, 1988,3(3):1059-1064.
  • 9N Rostamkolai, A G Phadke, W F Long et al. An adaptive optimal control stategy for dynamic stability enhancement of AC/DC power systems[J]. IEEE Trans on Power Systems, 1988, 3(3): 1139-1145.
  • 10ISIDORI A. Nonlinear Control Systems[M]. Third Edition. Berlin, Germany: Springer-Verlag, 1995.

共引文献77

同被引文献16

引证文献1

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部