期刊文献+

等导重根特征对的泰勒展开 被引量:1

Taylor Expansion of the Eigenpairs with a Repeated Latent Root Having Equal Derivatives
原文传递
导出
摘要 讨论多参数非亏损特征对的可微性,推导了具有等同一阶偏导数的重根特征对的计算公式,进而得到了它们的泰勒展开式. The differentiability of the eigenpairs with a nondefective latent root is investigated, where vibratory systems are described by general multi-parameter models. Computational formulae of the eigenpairs with a repeated root which have equal first partial derivatives are derived, and their Taylor expansions are accomplished further.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 1998年第5期621-628,共8页 Journal of Fudan University:Natural Science
关键词 可微性 泰勒展开 结构振动 等导重根特征 特征值 directional derivative differentiability Taylor expansion
  • 相关文献

参考文献3

  • 1Zhang Y Q,ASME J Eng Gas Turbines Power,1995年,117卷,207页
  • 2胡海昌,多自由度结构固有振动理论,1987年
  • 3陈传璋,数学分析,1979年

同被引文献6

  • 1李辉,丁桦.结构动力模型修正方法研究进展[J].力学进展,2005,35(2):170-180. 被引量:113
  • 2张德文.改进Guyan~递推减缩技术[J].计算结构力学及其应用,1996,13(1):90-94. 被引量:13
  • 3Guyan R J.Reduction of stiffness and mass matrices[J].AIAA Journal 1965,3(2):380.
  • 4O'Callahan J.A procedure for an improved reduced system (IRS) model.Proceedings of 7th International Modal Analysis Conference,Orlando,FL,U.S.A,1989,17-21.
  • 5Kammer D C.Test-analysis modal development using an exact modal reduction[J].The International Journal of Analytical and Experimental Modal Analysis,1987,2(4):174-179.
  • 6Xia Yong,Lin Rongming.A new iterative order reduction (IOR) method for eigensolutions of large structures[J].International Journal for Numerical Methods in Engineering 2004,59:153-172.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部