摘要
在最差情况最优的框架下研究存在交易费用时的期权定价问题.在风险厌恶的假设条件下,运用微分对策的上值、下值和值分别给出了期权买价、卖价和公平价格的定义.通过微分对策的降维把期权定价问题归结为求解微分对策的值函数.基于微分对策理论推导出了该值函数满足的偏微分方程.
Option pricing in the presence of transaction costs is investigated in the framework of worst-case optimization. Under the assumption of risk-aversion, option writing price, buying price and fair price are defined respectively with the upper value, the lower value and the value of a differen- tial game. Through the reduction of the differential game in dimension, the pricing problem is trans- formed into solving the value function of another differential game. A partial differential equation is obtained for the value function by using the theory of differential games.
出处
《华中理工大学学报》
CSCD
北大核心
1998年第10期10-12,共3页
Journal of Huazhong University of Science and Technology
基金
中国博士后科学基金资助项目
关键词
期权定价
交易费用
微分对策
金融市场
option pricing
transaction costs
differential game
partial differential equation Zheng Lihui Dr.
Institute of System Eng., HUST, Wuhan 430074, China.