期刊文献+

一种基于扩充特征集的流分类方法

Traffic classification based on extended feature set
下载PDF
导出
摘要 鉴于当前流分类研究均建立在使用载荷无关的流特征的基础上,而载荷无关的特征一般无法为准确分类提供充足的分类信息的问题,提出了一种基于扩充特征集的流分类方法,该方法首先提取载荷特征扩充流分类特征集合,特征集合扩充后,特征的数目显著增加,呈现出高维特性,进而针对高维特征空间,提出了一种混合型特征选择算法,并基于该算法选取的特征构建流分类器。实验结果表明,相对于使用载荷无关特征集的方法,所提出的方法能够显著改善分类效果,同时能够提升分类速度,更适用于现实网络环境。 In consideration of the problem that the present studies on traffic classification are all based on the use of payload- independent features, but the payload-independent features often do not contain sufficient information to allow for an accurate methodology, the paper proposes a traffic classification method based on the extended feature set. The method extends the flow feature set with payload, and after extension, the feature number is significantly increased. For high dimension data, the paper then proposes a hybrid feature selection algorithm for traffic classification and builds the classifier with the selected features. The experimental results demonstrate that the propesed method can not only guarantee a high classification accuracy but also a better performance in terms of classification speed. Therefore, it is more suitable for the real network applications than the traditional approaches.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2009年第10期998-1005,共8页 Chinese High Technology Letters
基金 863计划(2007AA01Z444 2007AA01Z474 2007AA010501 2007AA01Z467) 国家自然科学基金(60703021 60573134)资助项目
关键词 流分类 特征选择 信息增益 traffic classification, feature selection, information gain
  • 相关文献

参考文献19

  • 1Moore D, Zuev D. Intemet traffic classification using Bayesian analysis techniques. In: Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. New York, USA: ACM, 2005. 50-60.
  • 2Moore D, Keys K, Koga R, et al. The CoralReef software suite as a tool for system and network administrators. In: Proceedings of the 15th USENIX Conference on System Administration. California, USA: USENIX Association Berkeley, 2001. 133-144.
  • 3Logg C, Cottrell L. Characterization of the traffic between SLAC and the Intemet. http://www, slac. stanford, edu/ comp/net/slac-netflow/html/SLAC-netflow, html: Stanford Linear Accelerator Center, 2003.
  • 4Moore A W, Papagiannaki D. Toward the accurate identification of network applications. In: Proceedings of the 6th Passive and Active Measurement Workshop. Berlin: Springer, 2005. 41-54.
  • 5McGregor A, Hall M, Lorier P, et al. Flow clustering using machine learning techniques. In: Proceedings of the 5th Passive and Active Measurement Workshop. Berlin: Springer, 2004. 205-214.
  • 6Roughan M, Sen S, Spatscheck O, et al. Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification. In: Proceedings of the 4th ACM SIGCOMM Conference on Intemet Measurement. New York, USA: ACM New York, 2004. 135-148.
  • 7Bemaille L, Teixeira R, Salamatian K. Early application identification. In: Proceedings of the 2006 ACM CoNEXT Conference. New York, USA: ACM, 2006.
  • 8Williams N, Zander S, Annitage G. A preliminary comparison of five machine leaming algorithms for practical IP traffic flow classification. ACM SIGCOMM Computer Communication Review, 2006, 36(5): 5-16.
  • 9Zender S. NetMate meter, http://sourceforge.net/projects/netmate-meter: SourceForge, 2006.
  • 10Yu L, Liu H. Feature selection for high-dimensional data: A fast correlation-based fdter solution. In: Proceedings of the 20th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2003. 856-863.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部