期刊文献+

时间异步无线传感器网络的分布式目标跟踪 被引量:3

Distributed target tracking in asynchronous wireless sensor networks
下载PDF
导出
摘要 为了降低无线传感器网络在目标跟踪过程中的网络能耗,提出了一种时间异步条件下的分布式目标跟踪方法。首先,依据节点到目标的距离进行动态成簇,以跟踪簇为时间的计算单元,由簇头完成簇内跟踪时间计算及簇间贯序传递,然后引入并行粒子滤波(PPF)算法将粒子集分为多个子集,在子节点处并行采样、计算权重和重采样,最后,簇头节点收集各子节点上传的结果并完成目标的局部状态估计。仿真结果表明,PPF算法具有较好的跟踪精度,且相比于集中式粒子滤波(CPF)算法,可降低约38%的通信量。 To reduce the energy consumption of wireless sensor networks during their target tracking, a distributed target tracking method suited to the condition of time asynchronous was proposed. Firstly, dynamic clusters were established according to the distance between each node and the target. The tracking cluster was used as the calculation unit of time. The tracking time calculation in one cluster and sequential transferring among different clusters were implemented by cluster headers. Then, the particle set was separated into some subsets by the parallel particle filter (PPF) algorithm, which were sampled, weighed and resampled in several nodes. Finally, the estimation of local states was implemented by cluster headers through gathering the results uploaded from nodes. The simulation results show that the PPF algorithm has a good tracking accuracy and can reduce communication traffic about 38% compared with the center particle filter (CPF) algorithm.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2009年第10期1026-1030,共5页 Chinese High Technology Letters
基金 国家自然科学基金(60873240) 863计划(2009AA01Z201) 北京市教育委员会共建资助项目
关键词 无线传感器网络(WSN) 目标跟踪 时间异步 并行粒子滤波(PPF) wireless sensor network (WSN), target tracking, asynchronous, parallel particle filter (PPF)
  • 相关文献

参考文献10

  • 1Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-gaussian bayesian state estimation. Radar and Signal Processing IEEE Proceedings-F, 1993, 140(2): 107- 113.
  • 2Coates M. Distributed particle filters for sensor networks. In: Proceedings of the Information Processing in Sensor Networks, Berkeley, California, USA, 2004. 99-107.
  • 3Brooks R R, Ramanathan P, Sayeed A M. Distributed target classification and tracking in sensor networks. IEEE Proceedings on Sensor Networks and Applications, 2003, 91 (8): 1163-1171.
  • 4Bolic, M, Djuric, P M, Hong S J. Resampting algorithms and architectures for distributed particle filters. IEEE Transactions on Signal Processing, 2005, 53(7) : 2442-2450.
  • 5Michael K, Pal L Y. Covariance control for multisensor systems. IEEE Transactions on AES (S0018925),2002, 38(4): 1138-1157.
  • 6Simon J, Julier, Jeffrey K. Uhlmann. A new extension of the kalman filter to nonlinear systems. In: Proceedings of the International Symposium on Aerospace/Defense Signal Processing, Sensor Fusion, and Target Recognition, Orlando, FL, USA, 1997. 182-193.
  • 7Dai H, Hart R. TSync: a lightweight bidirectional time synchronization service for wireless sensor networks. ACM Mobile Computing and Communication Review, 2004,8( 1 ) : 125-139.
  • 8Ganerival S, Kumar R, Srivastava M B. Timing-sync protocol for sensor networks. In:Proceedings of the 1 st ACM Conference on Embedded Networked Sensor Systems (SenSys), Los Angeles, California, USA,2003. 138-149.
  • 9Miklos M, Branislav K, Gyula S, et al. The flooding time synchronization protocol. In: Proceedings of the 2nd Conference on Embedded Networked Sensor Systems (SenSys), Baltimore, Maryland, USA, 2004. 39-49.
  • 10Bar-Shalon Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation: Theory, Algorithms, and Software. New York: John Wiley & Sons, 2001. 373- 374.

同被引文献31

  • 1沈志华,赵英凯,王晓荣,严卉,姜志兵.全自主机器人双目视觉运动检测研究[J].计算机测量与控制,2006,14(1):26-27. 被引量:5
  • 2International Civil Aviation Organization(ICAO). Manual for Preventing Runway Incursions (Doc 9870). Montreal: ICAO,2006.1-60.
  • 3Watnick M. Airport movement area safety. In:Proceedings of IEEE/AIAA 11^th Digital Avionics Systems Conference, Seattle, USA,1992.549-552.
  • 4Steven D Y, Denise R J. Runway incursion and preven- tion: a technology solution. In: Proceedings of the Interna- tional Federation of Airworthiness' 31st International Conference, Athens, Greece,2001.1-22.
  • 5John J, Scott G, Kevin C. Ground Operations and Advaneed Runway Awareness and Advisory System. US pa- tent: 7890248,2005.
  • 6International Civil Aviation Organization (ICAO). Ad- vanced surface movement guidance and control systems ( A-SMGCS ) Manual ( Doc. 9830 ). Montreal: ICAO, 2004.1-80.
  • 7Gao H, Heuer T, Dimitropoulos K, et al. Safe airport oper- ation based on innovative magnetic detector system. Intel- ligent Transport Systems, 2009,2 (3) : 236 -244.
  • 8Stauffer D, French H, Lenz J, et al. A multi-sensor ap- proach to airport surface traffic tracking. In: Proceedings The AIAA/IEEE 12th Digital Avionics Systems Confer- ence, Fort Worth, USA, 1993. 430-432.
  • 9Chartier E, Hashemi Z. Surface surveillance systems using point sensors and segment-based tracking. In:Proceedings of 20th Digital Avionics Systems Conference, Minneapo- lis, USA ,2002.1-8.
  • 10Dimitropoulos K, Grammalidis N, Gragopoulos I, et al. De- tection, tracking and classification of vehicles and aircraft based on magnetic sensing technology. International Jour- nal of Applied Mathematics and Computer Sciences ,2005,1 (4) : 195-200.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部