期刊文献+

用矩阵微分建立股骨颈手术导航机器人位姿误差模型的方法

Construction of the position and orientation error model of navigation robots for femoral neck surgery using matrix differential
下载PDF
导出
摘要 应用矩阵微分建立了股骨颈手术导航机器人的位姿误差模型。依次做了以下主要工作:设计股骨颈手术导航机器人的三维形体结构,即串、并联混合机构;基于结构与运动特征,采用传递矩阵建立手术导航模型;提取特征参数作为微分变元,通过矩阵微分建立手术导航的位姿误差模型;应用仿真软件matlab7.0,以导航机器人的设计尺寸与容差值为变量,对特征参数引起的导航位姿误差分布进行仿真,其结果位姿误差呈平面分布,极大误差在边界线上获得。应用矩阵微分建立的手术导航误差分析模型的工程含义明确,结构规范,适用于将机器人的精度校核穿插到形体设计的前期阶段进行,在并行设计中的精度校验上有实用性。 This paper proposes a position and orientation error model of the femoral neck surgery navigation robots through matrix differential. The study consists of the following four steps: firstly, design of a three-dimension serial-parallel hybrid mechanical structure for the robots; secondly, construction of a navigation model through the transfer matrix based on the physical structure and the motion characteristics; thirdly, extraction of the characteristic parameters as the differential variables and establishing the position and orientation error model of surgery navigation by means of the matrix differential; finally, simulation of the navigation error distributions of the two structural variables in Matlab 7.0 with the actual sizes and tolerance values of the robots as variables, which results in an error distribution as the planar and the maximum error presentation at the boundary of the plane. The proposed explicit and normatively structured error analysis model for the surgery navigation, is suitable' for checking robot precision in the earlier mechanism structure design stage and is also applicable to accuracy calibration in parallel designs.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2009年第10期1048-1053,共6页 Chinese High Technology Letters
基金 国家科技支撑计划(2006BA103A16) 北京市科委科技计划(H060720050130)资助项目
关键词 股骨颈 导航机器人 位姿误差 传递矩阵 矩阵微分 femoral neck, navigation robot, position and orientation error, transfer matrix, matrix differential
  • 相关文献

参考文献15

  • 1Veitscheger W K, Wu C H. Robot accuracy analysis based on kinematics. IEEE Journal of Robotics and Automation, 1986, RA-2 (3) : 171-179.
  • 2Hunt K H. Structural kinematics of in-parallel-actuated robotarms. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1983, 105(4) : 705-712.
  • 3Waldron K J, Raghavan M, Roth B. Kinematics of a hybrid series-parallel manipulation system. Journal of Dynamic Systems, Measurement, and Control, 1989, 111(2): 211-221.
  • 4Masory O, Wang J, Zhuang H. On the accuracy of a stewart platform-part II: kinematic compensation and calibration. In: Procedings of International Conference on Robotics and Automation, Atlanta Georgia, USA, 1993, 1:725-731.
  • 5Wang S M, Ehmann K F. Measurement methods for the position errors of a multi-axis machine-Part I: principle and sensitivity analysis. Int J Mach Tools Manuf, 1999, 39: 951-964.
  • 6Wang S M, Ehmann K F. Measurement methods for the position errors of a multi-axis machine--Part II: applications and experimental results. Int J Mach Tools Manuf, 1999, 39: 1485-1505.
  • 7Innocenti C. Kinematic clearance sensitivity analysis of spatial structures with revolute joints. ASME Journal of Mechanical Design, 2002, 124(1) : 52-57.
  • 8Wang S M, Ehmann K F. Error model and accuracy analysis of a six-DOF stewart platform. Transactions of the ASME, 2002, 124 (5) : 286-295.
  • 9Meng J, Li Z X. A general approach for accuracy analysis of pa(.allel manipulators with joint clearance. In: Proceedings of the 2005 IEEE/RSJ International conference on Intelligent Robots and Systems, Edmonton, Canada, 2005. 2468-2473.
  • 10陈明哲 张启先.工业机器人误差分析[J].北京航空学学报,1984,(2):17-19.

二级参考文献39

  • 1Khalil W, Besnard S. Self calibration of Stewart-Gough parallel robots without extra sensors. IEEE Trans on Robotics and Automation, 1999, 15(6): 1118 - 1121.
  • 2Masory O, Wang J, Zhuang H. On the accuracy of a Stewart platform-Part II kinematic calibration and compensation. In:Proc of ICRA, Atlanta, 1993. 725 - 731.
  • 3Song J, Mon J. Error modeling and compensation for parallel kinematic machines. In: Proc of the First USA- Europe Forum on Parallel Kinematic Machines, Milano, 1998. 171 - 187.
  • 4Soons J A. On the geometric and thermal error of a hexapod machine tool. In: Proc of the First USA-Europe Forum on Parallel Kinematic Machines, Milano, 1999. 151 - 169.
  • 5Zhuang H, Roth Z S. Method for kinematic calibration of Stewart platforms. J of Robotic System, 1993, 10(3): 391 - 405.
  • 6Zhuang H, Liu L. Self-calibration of a class of parallel manipulators. In: Proc of ICRA, Minneapolis, 1996. 994 - 999.
  • 7Zhuang H. Self-calibration of parallel mechanisms with a case study on Stewart platforms. IEEE Trans on Robotics and Automation, 1997, 13(3): 387 - 397.
  • 8Zhuang H, Yan J, Masory O. Calibration of Stewart platform and other parallel manipulators by minimizing inverse kinematic residual. J of Robotic System, 1998,15(7): 395 - 405.
  • 9Rauf A, Kyu J. Fully antonomous calibration of parallel manipulators by imposing position constraints. In: Proc of ICRA,Seoul, 2001. 2389 - 2394.
  • 10Ota H, Shibukawa T, Tooyama T, et al. Forward kinematic calibration method for parellet mechanism using pose data measured by a double ball bar system. Invited Speech of CIRP Workshop, Paris, 2001.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部