期刊文献+

图有哈密顿(g,f)-因子的度条件

A degree condition for graphs to have Hamiltonian(g,f)-factors
原文传递
导出
摘要 设G是一个n阶2-连通图,整数a,b满足2≤a〈b,g(x)和f(x)是定义在V(G)上的两个非负整数值函数,使得任意x∈V(G),满足a≤g(x)〈f(x)≤b。证明了G有哈密顿(g,f)-因子,如果G的最小度数满足:δ(G)≥(b-1)^2-(a-1)(b-a)/(a-1),n〉(a+b-3)(a+b-2)/(a-1),且max{dG(x),dG(y)}≥((b-1)n/(a+b-2)对G中任意两个不相邻的顶点x,y都成立。 Let G be a 2-connected graph of order n,and let a and b be integers such that 2≤a〈b,and let g(x) and f(x) be two nonnegative integer-valued functions defined on V(G) such that a≤g(x)〈f(x)≤b for each x∈V(G).It is proved that G has a Hamiltonian(g,f)-factor if the minimum degree of G satisfies the following conditions,δ(G)≥(b-1)^2-(a-1)(b-a)/(a-1),n〉(a+b-3)(a+b-2)/(a-1),and max{dG(x),dG(y)}≥((b-1)n/(a+b-2) for any two nonadjacent vertices x and y in G.
作者 王超
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2009年第10期21-25,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10871119) 高等学校博士学科点专项基金资助课题(200804220001)
关键词 (g f)-因子 哈密顿(g f)-因子 graph (g f)-factor Hamiltonian(g,f)-factor
  • 相关文献

参考文献10

  • 1BONDY J A, MURTY U S R. Graph theory with applications[M]. London: Macroillan, Press Itd, 1976.
  • 2LIU Guizhen. (g <f)-Factors of graphs[J]. Acta Math Sci, 1994, 14:285-290.
  • 3刘桂真,张兰菊.图的因子和因子分解的若干进展[J].数学进展,2000,29(4):289-296. 被引量:13
  • 4LIU Guizhen, ZANG Wenan. f-Factors in bipartite ( mf)-graphs[ J]. Discrete Applied Mathematics, 2004, 136:45-54.
  • 5CAI Jiansheng, LIU Guizhen. Degree and stability number condition for the existence[J]. J Appl Math Comput, 2009, 29: 349-356.
  • 6CAI Jiansheng, LIU Guizhen. Stability number and fractional f-factors in graphs[J]. ArsComb, 2006, 80: 141-146.
  • 7LIU Guizhen, ZHANG Lanju. Fractional (g, f)-factors of graphs[J]. Acta Math Scientia: Ser B, 2001, 21(4) :541-545.
  • 8LIU Hongxia, LIU Guizhen. Neighborhood union and Hamiltonian (g,f)-factors ingraphs[J]. J Appl Math Comput, 2009, 29:207-216.
  • 9FAN Genghua. New sufficient conditions for cycles in graphs[J]. J Comb Theory: Ser B, 1984, 37: 221-227.
  • 10L Lov'asz. Subgraphs with prescribed valencies[J]. J Combin Theory, 1970, 8:391-416.

二级参考文献6

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部