期刊文献+

双边空间分数阶对流-扩散方程的一种有限差分解法 被引量:13

A finite difference method for the two-sided space-fractional advection-diffusion equation
原文传递
导出
摘要 给出双边空间分数阶对流-扩散方程的一种隐式有限差分解法。并证明了这种方法的相容性,无条件稳定性,以及由此得出的收敛性。最后给出数值例子,并对方程的数值解和精确解进行比较。 An implicit finite difference method for solving the two-sided space-fractional advection-diffusion equation is given.Consistency,unconditional stability,and convergence of the method are analyzed.Finally a numerical example is provided,and a comparison between the exact analytical solution and the numerical prediction is made.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2009年第10期26-29,共4页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10671113)
关键词 双边空间分数阶对流-扩散方程 移位Grnwald-Letnikov公式 有限差分法 稳定性分析 two-sided space-fractional advection-diffusion equations shifted Grnwald-Letnikov formula finite difference methods stability analysis
  • 相关文献

参考文献11

  • 1CHAVES A. Fractional diffusion equation to describe Levy flights[J]. Phys Lett A, 1998, 239:13-16.
  • 2MEERSCHAERT M, BENSON D, SCHEXER H P, et al. Stochastic solution of space-time fractional diffusion equations[J]. Phys Rev E, 2002, 65:1103-1106.
  • 3HILFER R. Applications of fractional calculus in physics[M]. Singepore: Word Scientific, 2000.
  • 4MAGIN R L. Fractional calculus in bioengineering[M]. New York: Begell House Publishers, 2006.
  • 5PODLUBNY I. Fractional differential equations[M]. New York: Academic Press, 1999.
  • 6OLDHAM K B, SPANIER J. The fractional calculus[M]. New York: Academic Press, 1974.
  • 7MEERSCHAERT M, TADJERAN C. Finite difference approximations for fractional advection-dispersion flow equations[ J]. J Comput Appl Math, 2004, 172:65-77.
  • 8MEERSCHAERT M, TADJERAN C. Finite difference approximations for two-sided space-fractional partial differential equations[ J]. Appl Numer Math, 2006, 56:80-90.
  • 9夏源,吴吉春.分数阶对流——弥散方程的数值求解[J].南京大学学报(自然科学版),2007,43(4):441-446. 被引量:13
  • 10LIU F, ANH V, TURNER I. Numerical solution of the space fractional Fokker-Planck equation[J]. J Computer Appl Math, 2004, 166: 209-219.

二级参考文献11

共引文献12

同被引文献82

引证文献13

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部