期刊文献+

高阶非线性微分方程的周期解 被引量:2

Periodic solution of the higher order nonlinear differential equation
原文传递
导出
摘要 利用重合度理论研究一类高阶时滞微分方程x(n)(t)+h(x′(t))+f(x(t))x′(t)+g(x(t-τ(t)))=p(t)周期解问题,得到T(T>0)周期解存在性的新结果,推广了已有的结果。 By employing the coincidence degree,a kind of higher order differential equations with delay and the equation x^(n)(t)+h(x (t))+f(x(t))x (t)+g(x(t-τ(t)))=p(t) are studied.Some new results on the existence of T(T〉0) periodic solutions are obtained,which generalizes the known results.
作者 陈新一
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2009年第10期43-47,共5页 Journal of Shandong University(Natural Science)
关键词 高阶微分方程 周期解 重合度 higher order differential equation periodic solution coincidence degree
  • 相关文献

参考文献6

二级参考文献5

共引文献113

同被引文献15

  • 1黄先开,向子贵.具有时滞的Duffing型方程+g(x(t—τ))=p(t)的2π周期解[J].科学通报,1994,39(3):201-203. 被引量:90
  • 2陈仕洲.具偏差变元高阶Lienard方程周期解存在性[J].纯粹数学与应用数学,2006,22(1):108-110. 被引量:12
  • 3Wang Zhengxin, Qian Longxia, Lu Shiping, etal. The existence and uniqueness of periodic solutions for a kind of Duigmg - type equation with two deviating arguments[J]. Nonlinear Analysis, 2010, 73: 3034-3043.
  • 4Zhou Qiyuan, Liu Bingwen. New results on almost periodic solutions for a class of nonlinear Duffmg equations with a deviating argument[J]. Appl Math Lett, 2009, 22:6 - 11.
  • 5Fink A M. Almost periodic differential equations[ M]//Lecture notes in mathematics: Volume 377. Berlin: Springer- Verlag, 1974: 80-112.
  • 6LI J W,,WANG G Q.Sharp inequalities for periodic functions. Applied Math E-notes . 2005
  • 7Hale JK.Theory of functional differential equations. . 1977
  • 8Gaines RE,Mawhin JL.Coincidence degree and nonlinear differential equations. Lecture Notes in Mathematics . 1977
  • 9Lu SP,Ge WG,Zheng ZX.Periodic solutions to neutral differential equation with deviating arguments. Journal of Applied Mathematics . 2004
  • 10李永昆.具偏差变元的Liénard型方程的周期解[J].Journal of Mathematical Research and Exposition,1998,18(4):565-570. 被引量:35

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部