期刊文献+

三阶非线性Volterra模型的自适应快速辨识

Fast adaptive identification of third-order nonlinear Volterra model
下载PDF
导出
摘要 在RFID倒扣封装设备研制中,高速倒扣机械手具有很强的非线性和时变特性,线性控制方法难以满足要求,因此本文提出了一种快速辨识算法,采用三阶非线性Volterra模型对机械手进行在线实时辨识。首先,利用不同阶输入向量的结构关系,由低阶输入向量直接构建高阶输入向量。接着,根据不同阶核的相关性从低阶核加速估计高阶核。最后,把线性变步长LMS方法引入到非线性自适应算法中,并用Lyapunov全局稳定理论进行证明。对实际系统的辨识实验表明:与常规方法比较,辨识时间从100 ms缩短为30 ms,辨识速度提高了3.3倍,辨识失调降低了93.3%,同时还具有更高的辨识精度,满足了对非线性系统辨识的精度要求和实时性要求。 As part of the RFID flip chip package development, the high speed manipulator has obvious nonlinear and time-variable characters, so a nonlinear adaptive inverse control is needed. The key to this method is to identify the high speed manipulator by using a third-order Volterra nonlinear model in limited time and with sufficient accuracy. However,it is hard to satisfy real time requirement with a conventional method. This paper proposes a fast identification algorithm to resolve the problem. Firstly, a high-order input vector is constructed from a low-order input vector according to the struc- tural character. Next, it speeds up the estimates of high-order kernels based on low-order kernels ac- cording to their correlation. Finally, it uses a linear variable step-size LMS strategy in a nonlinear al- gorithm and proves convergence with the Lyapunov global stability theorem. In experiments with a manipulator based on conventional and proposed methods, respectively, the results show tha this al- gorithm reduces the identification time from 100 ms to 30 ms, improves convergent speed 3.3 times and reduces misadjustment by 93.3%, as well as having great precision. It can satisfy both requirements of real-time and identification precision .
出处 《光学精密工程》 EI CAS CSCD 北大核心 2009年第10期2600-2605,共6页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2007BAQ01750)
关键词 非线性Volterra模型 自适应辨识 快速算法 nonlinear Volterra model adaptive identification fast algorithm
  • 相关文献

参考文献7

  • 1BERNARD W. Adaptive Signal Processing[M]. New Jersey: Pearson Education Inc, 2008.
  • 2LEE L, MATHEWS V J. A fast recursive least squares adaptive second-order Voherra filter and its performance analysis[J]. IEEE Trans. On Signal Processing, 1993,41 : 1087-1101.
  • 3Hiroshi Kashiwagi.High-Order Volterra Model Predictive Control and Its Application to a Nonlinear Polymerisation Process[J].International Journal of Automation and computing,2005,2(2):208-214. 被引量:4
  • 4XIE SH Y,ZHANG CH J. Variable learning rate LMS based linear adaptive inverse control [J]. Journal of Information and Computing Science, 2006,1 (3) : 139-148.
  • 5IFEACHOR E C, JERVIS B W. Digital Signal Processing: A Practical Approach [ M]. New Jersey:Pearson Education Inc. , 2002.
  • 6MARTHEWS V J. Adaptive Volterra filters using orthogonal structures[J]. IEEE Signal Processing Letters, 1996,3 ( 12 ) : 307- 309.
  • 7SYED M A, MATHEWS V J. Lattice algorithms for recursive least squares adaptive second-order Voherra filtering[J]. IEEE Trans. on Circuits and systems Ⅱ:Analog and Digital Signal Processing, 1994,41 (3) : 202-214.

二级参考文献2

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部