期刊文献+

跟踪窗口自适应的Mean Shift跟踪 被引量:16

Mean Shift tracking with adaptive tracking window
下载PDF
导出
摘要 传统的Mean Shift跟踪算法在目标发生形变时会因跟踪窗不能动态改变尺寸而导致目标跟偏甚至跟丢,因此本文提出了一种新的跟踪窗口大小和方向自适应的改进算法。首先,采用跟踪窗口内协方差矩阵主分量分析法来计算跟踪目标的方向和尺寸大小;然后,联合相似性度量和卡尔曼滤波器来更新跟踪窗口的大小和方向倾角,使之适应目标的变化。实验显示,本算法可对不断旋转和缩放的运动目标进行准确实时跟踪,当目标尺寸在35 pixel×17 pixel到176 pixel×80 pixel之间变化时,平均处理时间为17.45 ms/frame,表明改进的算法能够满足非刚体目标跟踪系统的要求。 A new algorithm to estimate the scale and orientation of a tracking window is presented. The algorithm overcomes the problem that the traditional Mean Shift based tracking algorithm often fails when a deformable target is tracked because of the rigid tracking window. Firstly, the principal components of the variance matrix are adopted to compute the scale and orientation of tracking target, then the similarity measure and Kalman filter are used to update the tracking window. Experimental results show that the algorithm can be implemented in real-time and can adapt to changes of scale and orientation of the moving object. The average computing time is only 17.45 ms/frame with the object's scales varying between 35 pixel×17 pixel and 176 pixel× 80 pixel. This algorithm can satisfy the re- quirements for tracking non-rigid objects.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2009年第10期2606-2611,共6页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2006AA040307)
关键词 MEANSHIFT 目标跟踪 主分量分析 形变目标 卡尔曼滤波器 Mean Shift target tracking principal component analysis deformable object Kalman filter
  • 相关文献

参考文献10

  • 1FUKANAGA K, HOSTETLER L D. The estimation of the gradient of a density function, with applications in pattern recognition [J]. IEEE Trans. On Information Theory, 1975,21(1):32-40.
  • 2孙中森,孙俊喜,宋建中,乔双.一种抗遮挡的运动目标跟踪算法[J].光学精密工程,2007,15(2):267-271. 被引量:30
  • 3YILMAZ A, SHAFIQUE K, SHAH M. Target tracking in airborne forward looking infrared imagery[J].Int'l Journal of Image and Vision Computing, 2003,21(7) :623-635.
  • 4COMANICIU D, RAMESH V, MEER P. Kernelbased object tracking[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25 (5) : 564-575.
  • 5COLLINS R T. Mean shift blob tracking through scale space [C]. 2003 IEEE Computer Society Conference or Computer Vision and Pattern Recognition (CVPR03), 2003,2: 234- 240.
  • 6YILMAZ A. Object tracking by asymmetric kernel Mean Shift with automatic scale and orientation selection [C]. Computer Vision and Pattern Recognition, IEEE Computer Society Conference, 2007 : 1-6.
  • 7彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 8张恒,李立春,于起峰.尺度方向自适应Mean Shift跟踪算法[J].光学精密工程,2008,16(6):1133-1139. 被引量:10
  • 9ZIVKOVIC Z, KROSE B. An EM-like algorithm for color-histogram-based object tracking[C]. Computer Vision and Pattern Recognition, IEEE Computer Society Conference, 2004:798-803.
  • 10HASTIE T. TIBSHIRANI R. The Elements of Statistical Learning [ M ]. 1st ed. America: Springer, 2001.

二级参考文献23

  • 1张恒,李立春,于起峰.一种目标区域最佳椭圆描述确定方法[J].红外与激光工程,2007,36(z2):254-258. 被引量:1
  • 2[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 3[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 4[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 5[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 6[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.
  • 7[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575.
  • 8[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240.
  • 9[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857.
  • 10[9]Hu W, Wang S, Lin RS, Levinson S. Tracking of object with SVM regression. In: Jacobs A, Baldwin T, eds. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2001. 240-245.

共引文献198

同被引文献228

引证文献16

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部